Silver Cow Party(最短路,好题)

Silver Cow Party
Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u
Submit  Status  Practice  POJ 3268

Descriptionios

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.算法

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.ui

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?spa

Inputcode

Line 1: Three space-separated integers, respectively:  NM, and  X 
Lines 2.. M+1: Line  i+1 describes road  i with three space-separated integers:  AiBi, and  Ti. The described road runs from farm  Ai to farm  Bi, requiring  Ti time units to traverse.

Outputorm

Line 1: One integer: the maximum of time any one cow must walk.
 
求两次最短路,第一次求x到其他各点的最短路,第二次求各点到x的最短路。前者易于解决,直接应用spfa或其余最短路算法便可,后者要先将邻接矩阵转置再执行最短路算法。
为何进行矩阵转置?好比u(u != x)到x的最短路为<u,v1>,<v1,v2>,<v2,v3>,...,<vi, x>,这条路径在转置邻接矩阵后变成<x,vi>,...,<v3,v2>,<v2, v1>,<v1,u>.因而乎,在转置邻接矩阵后,执行最短路算法求出x到u的最短路<x,vi>,...,<v3,v2>,<v2, v1>,<v1,u>便可获得转置前u到x的最短路。
 
 1     #include <iostream>
 2     #include <deque>
 3     #include <cstdio>
 4     #include <cstring>
 5     #include <algorithm>
 6 
 7     using namespace std;
 8 
 9     const int MAXV = 1002;
10     const int inf = 0x3f3f3f3f;
11     int t[MAXV][MAXV], d1[MAXV], d2[MAXV];
12     int que[MAXV<<1];
13     bool in[MAXV];
14     int n, m, x;
15 
16     void spfa(int * d)
17     {
18         memset(in, false, sizeof(in));
19         memset(d + 1, inf, sizeof(int) * n);//memset(d, inf, sizeof(d)) if wrong
20         d[x] = 0;
21         int tail = -1;
22         que[++tail] = x;
23         in[x] = true;
24         while(tail != -1){
25             int cur = que[tail];
26             tail--;
27             in[cur] = false;
28             for(int i = 1; i <= n; i++){
29                 if(d[cur] + t[cur][i] < d[i]){
30                     d[i] = d[cur] + t[cur][i];
31                     if(in[i] == false){
32                         que[++tail] = i;
33                         in[i] = true;
34                     }
35                 }
36             }
37         }
38     }
39 
40     void tran()
41     {
42         int i, j;
43         for(i = 1; i <= n; i++){
44             for(j = 1; j <= i; j++){
45                 swap(t[i][j], t[j][i]);
46             }
47         }
48     }
49 
50     int main()
51     {
52         while(scanf("%d %d %d", &n, &m, &x) != EOF){
53             memset(t, inf, sizeof(t));
54             while(m--){
55                 int a, b, c;
56                 scanf("%d %d %d", &a, &b, &c);
57                 t[a][b] = c;
58             }
59             spfa(d1);
60             tran();
61             spfa(d2);
62             int ans = -1;
63             for(int i = 1; i <= n; i++){
64                 if(d1[i] != inf && d2[i] != inf)
65                     ans = max(ans, d1[i] + d2[i]);
66             }
67             printf("%d\n", ans);
68         }
69         return 0;
70     }
相关文章
相关标签/搜索