概述 php
对于建表,和RDBMS相似,HBase也有namespace的概念,能够指定表空间建立表,也能够直接建立表,进入default表空间。 java
对于数据操做,HBase支持四类主要的数据操做,分别是: sql
Put :增长一行,修改一行; shell
Delete :删除一行,删除指定列族,删除指定column的多个版本,删除指定column的制定版本等; 数据库
这四个类都是 org.apache.hadoop.hbase.client的子类,能够到官网API去查看详细信息,本文仅总结经常使用方法,力争让读者用20%的时间掌握80%的经常使用功能。 apache
1.命名空间Namespace 缓存
2.建立表 安全
3.删除表 服务器
4.修改表 less
5.新增、更新数据Put
6.删除数据Delete
7.获取单行Get
8.获取多行Scan
1. 命名空间Namespace
在关系数据库系统中,命名空间
namespace指的是一个 表的逻辑分组 ,同一组中的表有相似的用途。命名空间的概念为 即将到来 的多租户特性打下基础:
1.1.命名空间管理
命名空间能够被建立、移除、修改。
表和命名空间的隶属关系 在在建立表时决定,经过如下格式指定:
<namespace>:<table>
Example:hbase shell中建立命名空间、建立命名空间中的表、移除命名空间、修改命名空间
#Create a namespace create_namespace 'my_ns'
#create my_table in my_ns namespace create 'my_ns:my_table', 'fam'
#drop namespace drop_namespace 'my_ns'
#alter namespace alter_namespace 'my_ns', {METHOD => 'set', 'PROPERTY_NAME' => 'PROPERTY_VALUE'}
1.2. 预约义的命名空间
有两个系统内置的预约义命名空间:
Example:指定命名空间和默认命名空间
#namespace=foo and table qualifier=bar create 'foo:bar', 'fam' #namespace=default and table qualifier=bar create 'bar', 'fam'
废话很少说,直接上样板代码,代码后再说明注意事项和知识点:
Configuration conf = HBaseConfiguration. create ();
HBaseAdmin admin = new HBaseAdmin(conf);
//create namespace named "my_ns"
admin.createNamespace(NamespaceDescriptor. create ( "my_ns" ).build());
//create tableDesc, with namespace name "my_ns" and table name "mytable "
HTableDescriptor tableDesc = new HTableDescriptor(TableName. valueOf ("my_ns:mytable" ));
tableDesc.setDurability(Durability. SYNC_WAL );
//add a column family " mycf "
HColumnDescriptor hcd = new HColumnDescriptor( "mycf" );
tableDesc.addFamily(hcd);
admin.createTable(tableDesc);
admin.close();
关键知识点:
删除表没建立表那么多学问,直接上代码:
Configuration conf = HBaseConfiguration. create ();
HBaseAdmin admin = new HBaseAdmin(conf);
String tablename = "my_ns:mytable" ;
if (admin.tableExists(tablename)) {
try {
admin.disableTable(tablename);
admin.deleteTable(tablename);
} catch (Exception e) {
// TODO : handle exception
e.printStackTrace();
}
}
admin.close();
说明 :删除表前必须先disable表。
4.1.实例代码
(1)删除列族、新增列族
修改以前,四个列族:
hbase(main):014:0> describe 'rd_ns:itable'
DESCRIPTION ENABLED
'rd_ns:itable', {NAME => ' info ', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROW', REPLICATION_SCOPE => '0', V true
ERSIONS => '10', COMPRESSION => 'NONE', MIN_VERSIONS => '0', TTL => '2147483647', KEEP_DELETED_CELLS => 'false',
BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE => 'true'}, {NAME => ' newcf ', DATA_BLOCK_ENCODING => 'NONE
', BLOOMFILTER => 'ROW', REPLICATION_SCOPE => '0', COMPRESSION => 'NONE', VERSIONS => '10', TTL => '2147483647',
MIN_VERSIONS => '0', KEEP_DELETED_CELLS => 'false', BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE => 'tr
ue'}, {NAME => ' note ', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROW', REPLICATION_SCOPE => '0', VERSIONS =>
'10', COMPRESSION => 'NONE', MIN_VERSIONS => '0', TTL => '2147483647', KEEP_DELETED_CELLS => 'false', BLOCKSIZE
=> '65536', IN_MEMORY => 'false', BLOCKCACHE => 'true'}, {NAME => ' sysinfo ', DATA_BLOCK_ENCODING => 'NONE', BLOOM
FILTER => 'ROW', REPLICATION_SCOPE => '0', COMPRESSION => 'NONE', VERSIONS => '10', TTL => '2147483647', MIN_VERS
IONS => '0', KEEP_DELETED_CELLS => 'true', BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE => 'true'}
1 row(s) in 0.0450 seconds
修改表,删除三个列族,新增一个列族,代码以下:
Configuration conf = HBaseConfiguration. create ();
HBaseAdmin admin = new HBaseAdmin(conf);
String tablename = "rd_ns:itable" ;
if (admin.tableExists(tablename)) {
try {
admin.disableTable(tablename);
//get the TableDescriptor of target table
HTableDescriptor newtd = admin.getTableDescriptor (Bytes. toBytes ("rd_ns:itable" ));
//remove 3 useless column families
newtd.removeFamily(Bytes. toBytes ( "note" ));
newtd.removeFamily(Bytes. toBytes ( "newcf" ));
newtd.removeFamily(Bytes. toBytes ( "sysinfo" ));
//create HColumnDescriptor for new column family
HColumnDescriptor newhcd = new HColumnDescriptor( "action_log" );
newhcd.setMaxVersions(10);
newhcd.setKeepDeletedCells( true );
//add the new column family(HColumnDescriptor) to HTableDescriptor
newtd.addFamily(newhcd);
//modify target table struture
admin. modifyTable (Bytes. toBytes ( "rd_ns:itable" ),newtd);
admin.enableTable(tablename);
} catch (Exception e) {
// TODO : handle exception
e.printStackTrace();
}
}
admin.close();
修改以后:
hbase(main):015:0> describe 'rd_ns:itable'
DESCRIPTION ENABLED
'rd_ns:itable', {NAME => ' action_log ', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROW', REPLICATION_SCOPE => true
'0', COMPRESSION => 'NONE', VERSIONS => '10', TTL => '2147483647', MIN_VERSIONS => '0', KEEP_DELETED_CELLS => 'tr
ue', BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE => 'true'}, {NAME => ' info ', DATA_BLOCK_ENCODING => '
NONE', BLOOMFILTER => 'ROW', REPLICATION_SCOPE => '0', VERSIONS => '10', COMPRESSION => 'NONE', MIN_VERSIONS => '
0', TTL => '2147483647', KEEP_DELETED_CELLS => 'false', BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE =>
'true'}
1 row(s) in 0.0400 seconds
逻辑很简单:
(2)修改现有列族的属性(setMaxVersions)
Configuration conf = HBaseConfiguration. create ();
HBaseAdmin admin = new HBaseAdmin(conf);
String tablename = "rd_ns:itable" ;
if (admin.tableExists(tablename)) {
try {
admin.disableTable(tablename);
//get the TableDescriptor of target table
HTableDescriptor htd = admin.getTableDescriptor(Bytes. toBytes ("rd_ns:itable" ));
HColumnDescriptor infocf = htd.getFamily(Bytes. toBytes ( "info" ));
infocf.setMaxVersions(100);
//modify target table struture
admin.modifyTable(Bytes. toBytes ( "rd_ns:itable" ),htd);
admin.enableTable(tablename);
} catch (Exception e) {
// TODO : handle exception
e.printStackTrace();
}
}
admin.close();
5.新增、更新数据Put
5.1.经常使用构造函数:
(1)指定行键
public Put(byte[] row)
参数: row 行键
(2)指定行键和时间戳
public Put(byte[] row, long ts)
参数: row 行键, ts 时间戳
(3)从目标字符串中提取子串,做为行键
Put(byte[] rowArray, int rowOffset, int rowLength)
(4)从目标字符串中提取子串,做为行键,并加上时间戳
Put(byte[] rowArray, int rowOffset, int rowLength, long ts)
5.2.经常使用方法:
(1)指定 列族、限定符 ,添加值
add(byte[] family, byte[] qualifier, byte[] value)
(2)指定 列族、限定符、时间戳 ,添加值
add(byte[] family, byte[] qualifier, long ts, byte[] value)
(3) 设置写WAL (Write-Ahead-Log)的级别
public void setDurability(Durability d)
参数是一个枚举值,能够有如下几种选择:
ASYNC_WAL : 当数据变更时,异步写WAL日志
SYNC_WAL : 当数据变更时,同步写WAL日志
FSYNC_WAL : 当数据变更时,同步写WAL日志,而且,强制将数据写入磁盘
SKIP_WAL : 不写WAL日志
5.3.实例代码
(1)插入行
Configuration conf = HBaseConfiguration. create ();
HTable table = new HTable(conf, "rd_ns:leetable" );
Put put = new Put(Bytes. toBytes ( "100001" ));
put.add(Bytes. toBytes ( "info" ), Bytes. toBytes ( "name" ), Bytes. toBytes ("lion" ));
put.add(Bytes. toBytes ( "info" ), Bytes. toBytes ( "address" ), Bytes. toBytes ("shangdi" ));
put.add(Bytes. toBytes ( "info" ), Bytes. toBytes ( "age" ), Bytes. toBytes ( "30"));
put.setDurability(Durability. SYNC_WAL );
table.put(put);
table.close();
(2)更新行
Configuration conf = HBaseConfiguration. create ();
HTable table = new HTable(conf, "rd_ns:leetable" );
Put put = new Put(Bytes. toBytes ( "100001" ));
put.add(Bytes. toBytes ( "info" ), Bytes. toBytes ( "name" ), Bytes. toBytes ("lee" ));
put.add(Bytes. toBytes ( "info" ), Bytes. toBytes ( "address" ), Bytes. toBytes ("longze" ));
put.add(Bytes. toBytes ( "info" ), Bytes. toBytes ( "age" ), Bytes. toBytes ( "31"));
put.setDurability(Durability. SYNC_WAL );
table.put(put);
table.close();
Put的构造函数都须要指定行键,若是是全新的行键,则新增一行;若是是已有的行键,则更新现有行。
(3) 从目标字符串中提取子串,做为行键,构建Put
Configuration conf = HBaseConfiguration. create ();
HTable table = new HTable(conf, "rd_ns:leetable" );
Put put = new Put(Bytes. toBytes ( "100001_100002" ),7,6);
put.add(Bytes. toBytes ( "info" ), Bytes. toBytes ( "name" ), Bytes. toBytes ("show" ));
put.add(Bytes. toBytes ( "info" ), Bytes. toBytes ( "address" ), Bytes. toBytes ("caofang" ));
put.add(Bytes. toBytes ( "info" ), Bytes. toBytes ( "age" ), Bytes. toBytes ( "30"));
table.put(put);
table.close();
注意,关于: Put put = new Put(Bytes. toBytes ( "100001_100002" ),7,6)
Delete类用于删除表中的一行数据,经过HTable.delete来执行该动做。
在执行Delete操做时,HBase并不会当即删除数据,而是对须要删除的数据打上一个“墓碑”标记,直到当Storefile合并时,再清除这些被标记上“墓碑”的数据。
若是但愿删除整行,用行键来初始化一个Delete对象便可。若是但愿进一步定义删除的具体内容,可使用如下这些Delete对象的方法:
下面详细说明构造函数和经常使用方法:
6.1.构造函数
(1)指定要删除的行键
Delete(byte[] row)
删除行键指定行的数据。
若是没有进一步的操做,使用该构造函数将删除行键指定的行中 全部列族中全部列的全部版本 !
(2)指定要删除的行键和时间戳
Delete(byte[] row, long timestamp)
删除行键和时间戳共同肯定行的数据。
若是没有进一步的操做,使用该构造函数将删除行键指定的行中,全部列族中全部列的 时间戳 小于等于 指定时间戳的数据版本 。
注意 :该时间戳仅仅和删除行有关,若是须要进一步指定列族或者列,你必须分别为它们指定时间戳。
(3)给定一个字符串,目标行键的偏移,截取的长度
Delete(byte[] rowArray, int rowOffset, int rowLength)
(4)给定一个字符串,目标行键的偏移,截取的长度,时间戳
Delete(byte[] rowArray, int rowOffset, int rowLength, long ts)
6.2.经常使用方法
6.3.实例代码
(1)删除整行的全部列族、全部行、全部版本
Configuration conf = HBaseConfiguration. create ();
HTable table = new HTable(conf, "rd_ns:leetable" );
Delete delete = new Delete(Bytes. toBytes ( "000" ));
table.delete(delete);
table.close();
(2)删除 指定列的最新版本
如下是删除以前的数据,注意看100003行的info:address,这是该列最新版本的数据,值是caofang1,在这以前的版本值是caofang:
hbase(main):007:0> scan 'rd_ns:leetable'
ROW COLUMN+CELL
100001 column=info:address, timestamp=1405304843114, value=longze
100001 column=info:age, timestamp=1405304843114, value=31
100001 column=info:name, timestamp=1405304843114, value=leon
100002 column=info:address, timestamp=1405305471343, value=caofang
100002 column=info:age, timestamp=1405305471343, value=30
100002 column=info:name, timestamp=1405305471343, value=show
100003 column=info:address, timestamp=1405390959464, value=caofang1
100003 column=info:age, timestamp=1405390959464, value=301
100003 column=info:name, timestamp=1405390959464, value=show1
3 row(s) in 0.0270 seconds
执行如下代码:
Configuration conf = HBaseConfiguration. create ();
HTable table = new HTable(conf, "rd_ns:leetable" );
Delete delete = new Delete(Bytes. toBytes ( "100003" ));
delete.deleteColumn(Bytes. toBytes ( "info" ), Bytes. toBytes ( "address" ));
table.delete(delete);
table.close();
而后查看数据,发现100003列的info:address列的值显示为前一个版本的caofang了!其他值均不变:
hbase(main):008:0> scan 'rd_ns:leetable'
ROW COLUMN+CELL
100001 column=info:address, timestamp=1405304843114, value=longze
100001 column=info:age, timestamp=1405304843114, value=31
100001 column=info:name, timestamp=1405304843114, value=leon
100002 column=info:address, timestamp=1405305471343, value=caofang
100002 column=info:age, timestamp=1405305471343, value=30
100002 column=info:name, timestamp=1405305471343, value=show
100003 column=info:address, timestamp=1405390728175, value=caofang
100003 column=info:age, timestamp=1405390959464, value=301
100003 column=info:name, timestamp=1405390959464, value=show1
3 row(s) in 0.0560 seconds
(3)删除 指定列的全部版本
接以上场景,执行如下代码:
Configuration conf = HBaseConfiguration. create ();
HTable table = new HTable(conf, "rd_ns:leetable" );
Delete delete = new Delete(Bytes. toBytes ( "100003" ));
delete. deleteColumns (Bytes. toBytes ( "info" ), Bytes. toBytes ( "address" ));
table.delete(delete);
table.close();
而后咱们会发现,100003行的整个info:address列都没了:
hbase(main):009:0> scan 'rd_ns:leetable'
ROW COLUMN+CELL
100001 column=info:address, timestamp=1405304843114, value=longze
100001 column=info:age, timestamp=1405304843114, value=31
100001 column=info:name, timestamp=1405304843114, value=leon
100002 column=info:address, timestamp=1405305471343, value=caofang
100002 column=info:age, timestamp=1405305471343, value=30
100002 column=info:name, timestamp=1405305471343, value=show
100003 column=info:age, timestamp=1405390959464, value=301
100003 column=info:name, timestamp=1405390959464, value=show1
3 row(s) in 0.0240 seconds
(4) 删除指定列族中全部 列的时间戳 等于 指定时间戳 的版本数据
为了演示效果,我已经向100003行的info:address列新插入一条数据
hbase(main):010:0> scan 'rd_ns:leetable'
ROW COLUMN+CELL
100001 column=info:address, timestamp=1405304843114, value=longze
100001 column=info:age, timestamp=1405304843114, value=31
100001 column=info:name, timestamp=1405304843114, value=leon
100002 column=info:address, timestamp=1405305471343, value=caofang
100002 column=info:age, timestamp=1405305471343, value=30
100002 column=info:name, timestamp=1405305471343, value=show
100003 column=info:address, timestamp= 1405391883886 , value=shangdi
100003 column=info:age, timestamp= 1405390959464 , value=301
100003 column=info:name, timestamp= 1405390959464 , value=show1
3 row(s) in 0.0250 seconds
如今,咱们的目的是删除info列族中,时间戳为1405390959464的全部列数据:
Configuration conf = HBaseConfiguration. create ();
HTable table = new HTable(conf, "rd_ns:leetable" );
Delete delete = new Delete(Bytes. toBytes ( "100003" ));
delete. deleteFamilyVersion (Bytes. toBytes ( "info" ), 1405390959464L);
table.delete(delete);
table.close();
hbase(main):011:0> scan 'rd_ns:leetable'
ROW COLUMN+CELL
100001 column=info:address, timestamp=1405304843114, value=longze
100001 column=info:age, timestamp=1405304843114, value=31
100001 column=info:name, timestamp=1405304843114, value=leon
100002 column=info:address, timestamp=1405305471343, value=caofang
100002 column=info:age, timestamp=1405305471343, value=30
100002 column=info:name, timestamp=1405305471343, value=show
100003 column=info:address, timestamp= 1405391883886 , value=shangdi
100003 column=info:age, timestamp= 1405390728175 , value=30
100003 column=info:name, timestamp= 1405390728175 , value=show
3 row(s) in 0.0250 seconds
能够看到,100003行的info列族,已经不存在时间戳为 1405390959464的数据,比它更早版本的数据被查询出来,而info列族中时间戳不等于 1405390959464的address列,不受该delete的影响 。
7.获取单行Get
若是但愿获取整行数据,用行键初始化一个Get对象就能够,若是但愿进一步缩小获取的数据范围,可使用Get对象的如下方法:
下面详细描述构造函数及经常使用方法:
7.1.构造函数
Get的构造函数很简单,只有一个构造函数: Get(byte[] row) 参数是行键。
7.2.经常使用方法
7.3.实测代码
测试表的全部数据:
hbase(main):016:0> scan 'rd_ns:leetable'
ROW COLUMN+CELL
100001 column=info:address, timestamp=1405304843114, value=longze
100001 column=info:age, timestamp=1405304843114, value=31
100001 column=info:name, timestamp=1405304843114, value=leon
100002 column=info:address, timestamp=1405305471343, value=caofang
100002 column=info:age, timestamp=1405305471343, value=30
100002 column=info:name, timestamp=1405305471343, value=show
100003 column=info:address, timestamp=1405407883218, value=qinghe
100003 column=info:age, timestamp=1405407883218, value=28
100003 column=info:name, timestamp=1405407883218, value=shichao
3 row(s) in 0.0250 seconds
(1)获取行键指定行的 全部列族、全部列 的 最新版本 数据
Configuration conf = HBaseConfiguration. create ();
HTable table = new HTable(conf, "rd_ns:leetable" );
Get get = new Get(Bytes. toBytes ( "100003" ));
Result r = table.get(get);
for (Cell cell : r.rawCells()) {
System. out .println(
"Rowkey : " +Bytes. toString (r.getRow())+
" Familiy:Quilifier : " +Bytes. toString (CellUtil. cloneQualifier (cell))+
" Value : " +Bytes. toString (CellUtil. cloneValue (cell))
);
}
table.close();
代码输出:
Rowkey : 100003 Familiy:Quilifier : address Value : qinghe
Rowkey : 100003 Familiy:Quilifier : age Value : 28
Rowkey : 100003 Familiy:Quilifier : name Value : shichao
(2)获取行键指定行中, 指定列 的最新版本数据
Configuration conf = HBaseConfiguration. create ();
HTable table = new HTable(conf, "rd_ns:leetable" );
Get get = new Get(Bytes. toBytes ( "100003" ));
get.addColumn(Bytes. toBytes ( "info" ), Bytes. toBytes ( "name" ));
Result r = table.get(get);
for (Cell cell : r.rawCells()) {
System. out .println(
"Rowkey : " +Bytes. toString (r.getRow())+
" Familiy:Quilifier : " +Bytes. toString (CellUtil. cloneQualifier (cell))+
" Value : " +Bytes. toString (CellUtil. cloneValue (cell))
);
}
table.close();
代码输出:
Rowkey : 100003 Familiy:Quilifier : name Value : shichao
(3)获取行键指定的行中, 指定时间戳 的数据
Configuration conf = HBaseConfiguration. create ();
HTable table = new HTable(conf, "rd_ns:leetable" );
Get get = new Get(Bytes. toBytes ( "100003" ));
get.setTimeStamp(1405407854374L);
Result r = table.get(get);
for (Cell cell : r.rawCells()) {
System. out .println(
"Rowkey : " +Bytes. toString (r.getRow())+
" Familiy:Quilifier : " +Bytes. toString (CellUtil. cloneQualifier (cell))+
" Value : " +Bytes. toString (CellUtil. cloneValue (cell))
);
}
table.close();
代码输出了上面scan命令输出中没有展现的历史数据:
Rowkey : 100003 Familiy:Quilifier : address Value : huangzhuang
Rowkey : 100003 Familiy:Quilifier : age Value : 32
Rowkey : 100003 Familiy:Quilifier : name Value : lily
(4)获取行键指定的行中, 全部版本 的数据
Configuration conf = HBaseConfiguration. create ();
HTable table = new HTable(conf, "rd_ns:itable" );
Get get = new Get(Bytes. toBytes ( "100003" ));
get.setMaxVersions();
Result r = table.get(get);
for (Cell cell : r.rawCells()) {
System. out .println(
"Rowkey : " +Bytes. toString (r.getRow())+
" Familiy:Quilifier : " +Bytes. toString (CellUtil. cloneQualifier (cell))+
" Value : " +Bytes. toString (CellUtil. cloneValue (cell))+
" Time : " +cell.getTimestamp()
);
}
table.close();
代码输出:
Rowkey : 100003 Familiy:Quilifier : address Value : xierqi Time : 1405417500485
Rowkey : 100003 Familiy:Quilifier : address Value : shangdi Time : 1405417477465
Rowkey : 100003 Familiy:Quilifier : address Value : longze Time : 1405417448414
Rowkey : 100003 Familiy:Quilifier : age Value : 29 Time : 1405417500485
Rowkey : 100003 Familiy:Quilifier : age Value : 30 Time : 1405417477465
Rowkey : 100003 Familiy:Quilifier : age Value : 31 Time : 1405417448414
Rowkey : 100003 Familiy:Quilifier : name Value : leon Time : 1405417500485
Rowkey : 100003 Familiy:Quilifier : name Value : lee Time : 1405417477465
Rowkey : 100003 Familiy:Quilifier : name Value : lion Time : 1405417448414
注意:
能输出多版本数据的前提是当前列族能保存多版本数据,列族能够保存的数据版本数经过HColumnDescriptor的setMaxVersions(Int)方法设置。
8.获取多行Scan
Scan对象能够返回知足给定条件的多行数据。 若是但愿获取全部的行,直接初始化一个Scan对象便可。 若是但愿限制扫描的行范围,可使用如下方法:
下面是官网文档中的一个入门示例:假设表有几行键值为 "row1", "row2", "row3",还有一些行有键值 "abc1", "abc2", 和 "abc3",目标是返回"row"打头的行:
HTable htable = ... // instantiate HTable
Scan scan = new Scan();
scan.addColumn(Bytes.toBytes("cf"),Bytes.toBytes("attr"));
scan.setStartRow( Bytes.toBytes("row")); // start key is inclusive
scan.setStopRow( Bytes.toBytes("row" + (char)0)); // stop key is exclusive
ResultScanner rs = htable.getScanner(scan);
try {
for (Result r = rs.next(); r != null; r = rs.next()) {
// process result...
} finally {
rs.close(); // always close the ResultScanner!
}
8.1.经常使用构造函数
(1)建立扫描全部行的Scan
Scan()
(2)建立Scan,从指定行开始扫描 ,
Scan(byte[] startRow)
参数: startRow 行键
注意 :若是指定行不存在,从下一个最近的行开始
(3)建立Scan,指定起止行
Scan(byte[] startRow, byte[] stopRow)
参数: startRow起始行, stopRow终止行
注意 : startRow <= 结果集 < stopRow
(4)建立Scan,指定起始行和过滤器
Scan(byte[] startRow, Filter filter)
参数: startRow 起始行, filter 过滤器
注意:过滤器的功能和构造参见http://blog.csdn.net/u010967382/article/details/37653177
8.2.经常使用方法
void setRaw (boolean raw) 激活或者禁用raw模式。若是raw模式被激活,Scan将返回 全部已经被打上删除标记但还没有被真正删除 的数据。该功能仅用于激活了KEEP_DELETED_ROWS的列族,即列族开启了 hcd.setKeepDeletedCells(true)
。Scan激活raw模式后,就不能指定任意的列,不然会报错
Enable/disable "raw" mode for this scan. If "raw" is enabled the scan will return all delete marker and deleted rows that have not been collected, yet. This is mostly useful for Scan on column families that have KEEP_DELETED_ROWS enabled. It is an error to specify any column when "raw" is set.
hcd.setKeepDeletedCells(true);
8.3.实测代码
(1)扫描表中的 全部行 的最新版本数据
Configuration conf = HBaseConfiguration. create ();
HTable table = new HTable(conf, "rd_ns:itable" );
Scan s = new Scan();
ResultScanner rs = table.getScanner(s);
for (Result r : rs) {
for (Cell cell : r.rawCells()) {
System. out .println(
"Rowkey : " +Bytes. toString (r.getRow())+
" Familiy:Quilifier : " +Bytes. toString (CellUtil. cloneQualifier(cell))+
" Value : " +Bytes. toString (CellUtil. cloneValue (cell))+
" Time : " +cell.getTimestamp()
);
}
}
table.close();
代码输出:
Rowkey : 100001 Familiy:Quilifier : address Value : anywhere Time : 1405417403438
Rowkey : 100001 Familiy:Quilifier : age Value : 24 Time : 1405417403438
Rowkey : 100001 Familiy:Quilifier : name Value : zhangtao Time : 1405417403438
Rowkey : 100002 Familiy:Quilifier : address Value : shangdi Time : 1405417426693
Rowkey : 100002 Familiy:Quilifier : age Value : 28 Time : 1405417426693
Rowkey : 100002 Familiy:Quilifier : name Value : shichao Time : 1405417426693
Rowkey : 100003 Familiy:Quilifier : address Value : xierqi Time : 1405417500485
Rowkey : 100003 Familiy:Quilifier : age Value : 29 Time : 1405417500485
Rowkey : 100003 Familiy:Quilifier : name Value : leon Time : 1405417500485
(2) 扫描指定行键范围,经过末尾加0,使得结果集包含StopRow
Configuration conf = HBaseConfiguration. create ();
HTable table = new HTable(conf, "rd_ns:itable" );
Scan s = new Scan();
s. setStartRow (Bytes. toBytes ( "100001" ));
s. setStopRow (Bytes. toBytes ( " 1000020 " ));
ResultScanner rs = table.getScanner(s);
for (Result r : rs) {
for (Cell cell : r.rawCells()) {
System. out .println(
"Rowkey : " +Bytes. toString (r.getRow())+
" Familiy:Quilifier : " +Bytes. toString (CellUtil. cloneQualifier(cell))+
" Value : " +Bytes. toString (CellUtil. cloneValue (cell))+
" Time : " +cell.getTimestamp()
);
}
}
table.close();
代码输出:
Rowkey : 100001 Familiy:Quilifier : address Value : anywhere Time : 1405417403438
Rowkey : 100001 Familiy:Quilifier : age Value : 24 Time : 1405417403438
Rowkey : 100001 Familiy:Quilifier : name Value : zhangtao Time : 1405417403438
Rowkey : 100002 Familiy:Quilifier : address Value : shangdi Time : 1405417426693
Rowkey : 100002 Familiy:Quilifier : age Value : 28 Time : 1405417426693
Rowkey : 100002 Familiy:Quilifier : name Value : shichao Time : 1405417426693
(3) 返回 全部已经被打上删除标记但还没有被真正删除 的数据
本测试针对rd_ns:itable表的100003行。
若是使用get结合 setMaxVersions() 方法能返回全部未删除的数据,输出以下:
Rowkey : 100003 Familiy:Quilifier : address Value : huilongguan Time : 1405494141522
Rowkey : 100003 Familiy:Quilifier : address Value : shangdi Time : 1405417477465
Rowkey : 100003 Familiy:Quilifier : age Value : new29 Time : 1405494141522
Rowkey : 100003 Familiy:Quilifier : name Value : liyang Time : 1405494141522
然而,使用Scan强大的 s.setRaw( true ) 方法,能够得到全部 已经被打上删除标记但还没有被真正删除 的数据。
代码以下:
Configuration conf = HBaseConfiguration. create ();
HTable table = new HTable(conf, "rd_ns:itable" );
Scan s = new Scan();
s.setStartRow(Bytes. toBytes ( "100003" ));
s.setRaw( true );
s.setMaxVersions();
ResultScanner rs = table.getScanner(s);
for (Result r : rs) {
for (Cell cell : r.rawCells()) {
System. out .println(
"Rowkey : " +Bytes. toString (r.getRow())+
" Familiy:Quilifier : " +Bytes. toString (CellUtil. cloneQualifier(cell))+
" Value : " +Bytes. toString (CellUtil. cloneValue (cell))+
" Time : " +cell.getTimestamp()
);
}
}
table.close();
输出结果以下:
Rowkey : 100003 Familiy:Quilifier : address Value : huilongguan Time : 1405494141522
Rowkey : 100003 Familiy:Quilifier : address Value : Time : 1405417500485
Rowkey : 100003 Familiy:Quilifier : address Value : xierqi Time : 1405417500485
Rowkey : 100003 Familiy:Quilifier : address Value : shangdi Time : 1405417477465
Rowkey : 100003 Familiy:Quilifier : address Value : Time : 1405417448414
Rowkey : 100003 Familiy:Quilifier : address Value : longze Time : 1405417448414
Rowkey : 100003 Familiy:Quilifier : age Value : new29 Time : 1405494141522
Rowkey : 100003 Familiy:Quilifier : age Value : Time : 1405417500485
Rowkey : 100003 Familiy:Quilifier : age Value : Time : 1405417500485
Rowkey : 100003 Familiy:Quilifier : age Value : 29 Time : 1405417500485
Rowkey : 100003 Familiy:Quilifier : age Value : 30 Time : 1405417477465
Rowkey : 100003 Familiy:Quilifier : age Value : 31 Time : 1405417448414
Rowkey : 100003 Familiy:Quilifier : name Value : liyang Time : 1405494141522
Rowkey : 100003 Familiy:Quilifier : name Value : Time : 1405493879419
Rowkey : 100003 Familiy:Quilifier : name Value : leon Time : 1405417500485
Rowkey : 100003 Familiy:Quilifier : name Value : lee Time : 1405417477465
Rowkey : 100003 Familiy:Quilifier : name Value : lion Time : 1405417448414
(4) 结合过滤器,获取全部age在25到30之间的行
目前的数据:
hbase(main):049:0> scan 'rd_ns:itable'
ROW COLUMN+CELL
100001 column=info:address, timestamp=1405417403438, value=anywhere
100001 column=info:age, timestamp=1405417403438, value=24
100001 column=info:name, timestamp=1405417403438, value=zhangtao
100002 column=info:address, timestamp=1405417426693, value=shangdi
100002 column=info:age, timestamp=1405417426693, value=28
100002 column=info:name, timestamp=1405417426693, value=shichao
100003 column=info:address, timestamp=1405494141522, value=huilongguan
100003 column=info:age, timestamp=1405494999631, value=29
100003 column=info:name, timestamp=1405494141522, value=liyang
3 row(s) in 0.0240 seconds
代码:
Configuration conf = HBaseConfiguration. create ();
HTable table = new HTable(conf, "rd_ns:itable" );
FilterList filterList = new FilterList(FilterList.Operator. MUST_PASS_ALL );
SingleColumnValueFilter filter1 = new SingleColumnValueFilter(
Bytes. toBytes ( "info" ),
Bytes. toBytes ( "age" ),
CompareOp. GREATER_OR_EQUAL ,
Bytes. toBytes ( "25" )
);
SingleColumnValueFilter filter2 = new SingleColumnValueFilter(
Bytes. toBytes ( "info" ),
Bytes. toBytes ( "age" ),
CompareOp. LESS_OR_EQUAL ,
Bytes. toBytes ( "30" )
);
filterList.addFilter(filter1);
filterList.addFilter(filter2);
Scan scan = new Scan();
scan.setFilter(filterList);
ResultScanner rs = table.getScanner(scan);
for (Result r : rs) {
for (Cell cell : r.rawCells()) {
System. out .println(
"Rowkey : " +Bytes. toString (r.getRow())+
" Familiy:Quilifier : " +Bytes. toString (CellUtil. cloneQualifier(cell))+
" Value : " +Bytes. toString (CellUtil. cloneValue (cell))+
" Time : " +cell.getTimestamp()
);
}
}
table.close();
代码输出:
Rowkey : 100002 Familiy:Quilifier : address Value : shangdi Time : 1405417426693
Rowkey : 100002 Familiy:Quilifier : age Value : 28 Time : 1405417426693
Rowkey : 100002 Familiy:Quilifier : name Value : shichao Time : 1405417426693
Rowkey : 100003 Familiy:Quilifier : address Value : huilongguan Time : 1405494141522
Rowkey : 100003 Familiy:Quilifier : age Value : 29 Time : 1405494999631
Rowkey : 100003 Familiy:Quilifier : name Value : liyang Time : 1405494141522