深度学习目标检测系列:faster RCNN实现|附python源码

摘要: 本文在讲述RCNN系列算法基本原理基础上,使用keras实现faster RCNN算法,在细胞检测任务上表现优异,可动手操做一下。

目标检测一直是计算机视觉中比较热门的研究领域,有一些经常使用且成熟的算法获得业内公认水平,好比RCNN系列算法、SSD以及YOLO等。若是你是从事这一行业的话,你会使用哪一种算法进行目标检测任务呢?在我寻求在最短的时间内构建最精确的模型时,我尝试了其中的R-CNN系列算法,若是读者们对这方面的算法还不太了解的话,建议阅读《目标检测算法图解:一文看懂RCNN系列算法》。在掌握基本原理后,下面进入实战部分。python

本文将使用一个很是酷且有用的数据集来实现faster R-CNN,这些数据集具备潜在的真实应用场景。git

问题陈述

数据来源于医疗相关数据集,目的是解决血细胞检测问题。任务是经过显微图像读数来检测每张图像中的全部红细胞(RBC)、白细胞(WBC)以及血小板。最终预测效果应以下所示:github

选择该数据集的缘由是咱们血液中RBC、WBC和血小板的密度提供了大量关于免疫系统和血红蛋白的信息,这些信息能够帮助咱们初步地识别一我的是否健康,若是在其血液中发现了任何差别,咱们就能够迅速采起行动来进行下一步的诊断。算法

经过显微镜手动查看样品是一个繁琐的过程,这也是深度学习模式可以发挥重要做用的地方,一些算法能够从显微图像中分类和检测血细胞,而且达到很高的精确度。架构

本文采用的血细胞检测数据集能够从这里下载,本文稍微修改了一些数据:框架

  • 边界框已从给定的.xml格式转换为.csv格式;
  • 随机划分数据集,获得训练集和测试集;

这里使用流行的Keras框架构建本文模型。svn

系统设置

在真正进入模型构建阶段以前,须要确保系统已安装正确的库和相应的框架。运行此项目须要如下库:工具

  • pandas
  • matplotlib
  • tensorflow
  • keras – 2.0.3
  • numpy
  • opencv-python
  • sklearn
  • h5py

对于已经安装了Anaconda和Jupyter的电脑而言,上述这些库大多数已经安装好了。建议从此连接下载requirements.txt文件,并使用它来安装剩余的库。在终端中键入如下命令来执行此操做:学习

pip install -r requirement.txt

系统设置好后,下一步是进行数据处理。测试

数据探索

首先探索所拥有的数据老是一个好开始(坦率地说,这是一个强制性的步骤)。对数据熟悉有助于挖掘隐藏的模式,还能够得到对总体的洞察力。本文从整个数据集中建立了三个文件,分别是:

  • train_images:用于训练模型的图像,包含每一个图像的类别和实际边界框;
  • test_images:用于模型预测的图像,该集合缺乏对应的标签;
  • train.csv:包含每一个图像的名称、类别和边界框坐标。一张图像能够有多行数据,由于单张图像可能包含多个对象;

读取.csv文件并打印出前几行:

# importing required libraries
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from matplotlib import patches

# read the csv file using read_csv function of pandas
train = pd.read_csv(‘train.csv’)
train.head()

训练文件中总共有6列,其中每列表明的内容以下:

  • image_names:图像的名称;
  • cell_type:表示单元的类型;
  • xmin:图像左下角的x坐标;
  • xmax:图像右上角的x坐标;
  • ymin:图像左下角的y坐标;
  • ymax:图像右上角的y坐标;

下面打印出一张图片来展现正在处理的图像:

# reading single image using imread function of matplotlib
image = plt.imread('images/1.jpg')
plt.imshow(image)

上图就是血细胞图像的样子,其中,蓝色部分表明WBC,略带红色的部分表明RBC。下面看看整个训练集中总共有多少张图像和不一样类型的数量。

# Number of classes
train['cell_type'].value_counts()

结果显示训练集有254张图像。

# Number of classes
train['cell_type'].value_counts()

结果显示有三种不一样类型的细胞,即RBC,WBC和血小板。最后,看一下检测到的对象的图像是怎样的:

fig = plt.figure()

#add axes to the image
ax = fig.add_axes([0,0,1,1])

# read and plot the image
image = plt.imread('images/1.jpg')
plt.imshow(image)

# iterating over the image for different objects
for _,row in train[train.image_names == "1.jpg"].iterrows():
    xmin = row.xmin
    xmax = row.xmax
    ymin = row.ymin
    ymax = row.ymax

    width = xmax - xmin
    height = ymax - ymin

    # assign different color to different classes of objects
    if row.cell_type == 'RBC':
        edgecolor = 'r'
        ax.annotate('RBC', xy=(xmax-40,ymin+20))
    elif row.cell_type == 'WBC':
        edgecolor = 'b'
        ax.annotate('WBC', xy=(xmax-40,ymin+20))
    elif row.cell_type == 'Platelets':
        edgecolor = 'g'
        ax.annotate('Platelets', xy=(xmax-40,ymin+20))

    # add bounding boxes to the image
    rect = patches.Rectangle((xmin,ymin), width, height, edgecolor = edgecolor, facecolor = 'none')

    ax.add_patch(rect)

上图就是训练样本示例,从中能够看到,细胞有不一样的类及其相应的边界框。下面进行模型训练,本文使用keras_frcnn库来训练搭建的模型以及对测试图像进行预测。

faster R-CNN实现

为了实现 faster R-CNN算法,本文遵循此Github存储库中提到的步骤。所以,首先请确保克隆好此存储库。打开一个新的终端窗口并键入如下内容以执行此操做:

git clone https://github.com/kbardool/keras-frcnn.git

并将train_imagestest_images文件夹以及train.csv文件移动到该存储库目录下。为了在新数据集上训练模型,输入的格式应为:

filepath,x1,y1,x2,y2,class_name

其中:

  • filepath是训练图像的路径;
  • x1是边界框的xmin坐标;
  • y1是边界框的ymin坐标;
  • x2是边界框的xmax坐标;
  • y2是边界框的ymax坐标;
  • class_name是该边界框中类的名称;

这里须要将.csv格式转换为.txt文件,该文件具备与上述相同的格式。建立一个新的数据帧,按照格式将全部值填入该数据帧,而后将其另存为.txt文件。

data = pd.DataFrame()
data['format'] = train['image_names']

# as the images are in train_images folder, add train_images before the image name
for i in range(data.shape[0]):
    data['format'][i] = 'train_images/' + data['format'][i]

# add xmin, ymin, xmax, ymax and class as per the format required
for i in range(data.shape[0]):
    data['format'][i] = data['format'][i] + ',' + str(train['xmin'][i]) + ',' + str(train['ymin'][i]) + ',' + str(train['xmax'][i]) + ',' + str(train['ymax'][i]) + ',' + train['cell_type'][i]

data.to_csv('annotate.txt', header=None, index=None, sep=' ')

下一步进行模型训练,使用train_frcnn.py文件来训练模型。

cd keras-frcnn
python train_frcnn.py -o simple -p annotate.txt

因为数据集较大,须要一段时间来训练模型。若是条件知足的话,可使用GPU来加快训练过程。一样也能够尝试减小num_epochs参数来加快训练过程。

模型每训练好一次(有改进时),该特定时刻的权重将保存在与“model_frcnn.hdf5”相同的目录中。当对测试集进行预测时,将使用到这些权重。

根据机器的配置,可能须要花费大量时间来训练模型并得到权重。建议使用本文训练大约500个时期的权重做为初始化。能够从这里下载这些权重,并设置好相应的路径。

所以,当模型训练好并保存好权重后,下面进行预测。Keras_frcnn对新图像进行预测并将其保存在新文件夹中,这里只需在test_frcnn.py文件中进行两处更改便可保存图像:

  • 从该文件的最后一行删除注释:

    • cv2.imwrite('./ results_imgs / {}。png'.format(idx),img);
  • 在此文件的倒数第二行和第三行添加注释:

    • #cv2.imshow('img',img) ;
    • #cv2.waitKey(0);

 使用下面的代码进行图像预测:

python test_frcnn.py -p test_images

最后,检测到对象的图像将保存在“results_imgs”文件夹中。如下是本文实现faster R-CNN后预测几个样本得到的结果:

结果1

结果2

结果3

结果4

总结

R-CNN算法确实是用于对象检测任务的变革者,改变了传统的作法,并开创了深度学习算法。近年来,计算机视觉应用的数量忽然出现飙升,而R-CNN系列算法仍然是其中大多数应用的核心。

Keras_frcnn也被证实是一个很好的对象检测工具库,在本系列的下一篇文章中,将专一于更先进的技术,如YOLO,SSD等。



本文做者:【方向】

阅读原文

本文为云栖社区原创内容,未经容许不得转载。

相关文章
相关标签/搜索