hadooop提供了一个设置map个数的参数mapred.map.tasks,咱们能够经过这个参数来控制map的个数。可是经过这种方式设置map 的个数,并非每次都有效的。缘由是mapred.map.tasks只是一个hadoop的参考数值,最终map的个数,还取决于其余的因素。程序员
为了方便介绍,先来看几个名词:
block_size : hdfs的文件块大小,默认为64M,能够经过参数dfs.block.size设置
total_size : 输入文件总体的大小
input_file_num : 输入文件的个数
(1)默认map个数
若是不进行任何设置,默认的map个数是和blcok_size相关的。
default_num = total_size / block_size;
(2)指望大小
能够经过参数mapred.map.tasks来设置程序员指望的map个数,可是这个个数只有在大于default_num的时候,才会生效。
goal_num = mapred.map.tasks;
(3)设置处理的文件大小
能够经过mapred.min.split.size 设置每一个task处理的文件大小,可是这个大小只有在大于block_size的时候才会生效。
split_size = max(mapred.min.split.size, block_size);
split_num = total_size / split_size;
(4)计算的map个数
compute_map_num = min(split_num, max(default_num, goal_num))
除了这些配置之外,mapreduce还要遵循一些原则。 mapreduce的每个map处理的数据是不能跨越文件的,也就是说min_map_num >= input_file_num。 因此,最终的map个数应该为:
final_map_num = max(compute_map_num, input_file_num)
通过以上的分析,在设置map个数的时候,能够简单的总结为如下几点:
(1)若是想增长map个数,则设置mapred.map.tasks 为一个较大的值。
(2)若是想减少map个数,则设置mapred.min.split.size 为一个较大的值。
(3)若是输入中有不少小文件,依然想减小map个数,则须要将小文件merger为大文件,而后使用准则2。