全球100款大数据工具汇总(前50款)

 

 

 

01  Talend Open Studio程序员

 

是第一家针对的数据集成工具市场的ETL(数据的提取Extract、传输Transform、载入Load)开源软件供应商。Talend的下载量已超过200万人次,其开源软件提供了数据整合功能。其用户包括美国国际集团(AIG)、康卡斯特、电子港湾、通用电气、三星、Ticketmaster和韦里逊等企业组织。web

 

 

02 DYSON算法

 

探码科技自主研发的DYSON智能分析系统,能够完整的实现大数据的采集、分析、处理。DYSON智能分析系统专业针对互联网数据抓取、处理、分析,挖掘。能够灵活迅速地抓取网页上散乱分布的信息,并经过强大的处理功能,准确挖掘出所需数据,是目前使用人数最多的网页采集工具.sql

 

 

03 YARNshell

 

一种新的Hadoop资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,解决了旧MapReduce框架的性能瓶颈。它的基本思想是把资源管理和做业调度/监控的功能分割到单独的守护进程。数据库

 

 

04 Mesos编程

 

由加州大学伯克利分校的AMPLab首先开发的一款开源群集管理软件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等架构。对数据中心而言它就像一个单一的资源池,从物理或虚拟机器中抽离了CPU,内存,存储以及其它计算资源, 很容易创建和有效运行具有容错性和弹性的分布式系统。安全

 

 

05 Datale性能优化

 

由探码科技研发的一款基于Hadoop的大数据平台开发套件,RAI大数据应用平台架构。服务器

 

 

06 Ambari

 

做为Hadoop生态系统的一部分,提供了基于Web的直观界面,可用于配置、管理和监控Hadoop集群。目前已支持大多数Hadoop组件,包括HDFS、MapReduce、Hive、Pig、 Hbase、Zookeper、Sqoop和Hcatalog等。

 

 

07 ZooKeeper

 

一个分布式的应用程序协调服务,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的工具,让Hadoop集群里面的节点能够彼此协调。ZooKeeper如今已经成为了 Apache的顶级项目,为分布式系统提供了高效可靠且易于使用的协同服务。

 

 

08 Thrift

 

在2007年facebook提交Apache基金会将Thrift做为一个开源项目,对于当时的facebook来讲创造thrift是为了解决facebook系统中各系统间大数据量的传输通讯以及系统之间语言环境不一样须要跨平台的特性。

 

 

09 Chukwa

 

监测大型分布式系统的一个开源数据采集系统,创建在HDFS/MapReduce框架之上并继承了Hadoop的可伸缩性和可靠性,能够收集来自大型分布式系统的数据,用于监控。它还包括灵活而强大的显示工具用于监控、分析结果。

 

 

10 Lustre

 

一个大规模的、安全可靠的、具有高可用性的集群文件系统,它是由SUN公司开发和维护的。该项目主要的目的就是开发下一代的集群文件系统,目前能够支持超过10000个节点,数以PB的数据存储量。

 

 

11 HDFS

 

Hadoop Distributed File System,简称HDFS,是一个分布式文件系统。HDFS是一个高度容错性的系统,适合部署在廉价的机器上。HDFS能提供高吞吐量的数据访问,很是适合大规模数据集上的应用。

 

 

12 GlusterFS

 

一个集群的文件系统,支持PB级的数据量。GlusterFS 经过RDMA和TCP/IP方式将分布到不一样服务器上的存储空间聚集成一个大的网络化并行文件系统。

 

 

13 Alluxio

 

前身是Tachyon,是之内存为中心的分布式文件系统,拥有高性能和容错能力,可以为集群框架(如Spark、MapReduce)提供可靠的内存级速度的文件共享服务。

 

 

14 Ceph

 

新一代开源分布式文件系统,主要目标是设计成基于POSIX的没有单点故障的分布式文件系统,提升数据的容错性并实现无缝的复制。

 

 

15 PVFS

 

一个高性能、开源的并行文件系统,主要用于并行计算环境中的应用。PVFS特别为超大数量的客户端和服务器端所设计,它的模块化设计结构可轻松的添加新的硬件和算法支持。

 

 

16 QFS

 

Quantcast File System (QFS) 是一个高性能、容错好、分布式的文件系统,用于开发支持 MapReduce处理或者须要顺序读写大文件的应用。

 

 

17  Logstash

 

一个应用程序日志、事件的传输、处理、管理和搜索的平台。能够用它来统一对应用程序日志进行收集管理,提供了Web接口用于查询和统计。

 

 

18 Scribe

 

Scribe是Facebook开源的日志收集系统,它可以从各类日志源上收集日志,存储到一个中央存储系统(能够是NFS,分布式文件系统等)上,以便于进行集中统计分析处理。

 

 

19 Flume

 

Cloudera提供的一个高可用的、高可靠的、分布式的海量日志采集、聚合和传输的系统。Flume支持在日志系统中定制各种数据发送方,用于收集数据。同时,Flume支持对数据进行简单处理,并写入各类数据接受方(可定制)。

 

 

20 RabbitMQ

 

一个受欢迎的消息代理系统,一般用于应用程序之间或者程序的不一样组件之间经过消息来进行集成。RabbitMQ提供可靠的应用消息发送、易于使用、支持全部主流操做系统、支持大量开发者平台。

 

 

21 ActiveMQ

 

Apache出品,号称“最流行的,最强大”的开源消息集成模式服务器。ActiveMQ特色是速度快,支持多种跨语言的客户端和协议,其企业集成模式和许多先进的功能易于使用,是一个彻底支持JMS1.1和J2EE 1.4规范的JMS Provider实现。

 

 

22 Kafka

 

一种高吞吐量的分布式发布订阅消息系统,它能够处理消费者规模网站中的全部动做流数据,目前已成为大数据系统在异步和分布式消息之间的最佳选择。

 

 

23 Spark

 

一个高速、通用大数据计算处理引擎。拥有Hadoop MapReduce所具备的优势,但不一样的是Job的中间输出结果能够保存在内存中,从而再也不须要读写HDFS,所以Spark能更好地适用于数据挖掘与机器学习等须要迭代的MapReduce的算法。它能够与Hadoop和Apache Mesos一块儿使用,也能够独立使用。

 

 

24 Kinesis

 

能够构建用于处理或分析流数据的自定义应用程序,来知足特定需求。Amazon Kinesis Streams 每小时可从数十万种来源中连续捕获和存储数TB数据,如网站点击流、财务交易、社交媒体源、IT日志和定位追踪事件。

 

 

25  Hadoop

 

一个开源框架,适合运行在通用硬件,支持用简单程序模型分布式处理跨集群大数据集,支持从单一服务器到上千服务器的水平scale up。Apache的Hadoop项目已几乎与大数据划上了等号,它不断壮大起来,已成为一个完整的生态系统,拥有众多开源工具面向高度扩展的分布式计算。高效、可靠、可伸缩,可以为你的数据存储项目提供所需的YARN、HDFS和基础架构,而且运行主要的大数据服务和应用程序。

 

 

 

26 Spark Streaming

 

实现微批处理,目标是很方便的创建可扩展、容错的流应用,支持Java、Scala和Python,和Spark无缝集成。Spark Streaming能够读取数据HDFS,Flume,Kafka,Twitter和ZeroMQ,也能够读取自定义数据。

 

 

27 Trident

 

是对Storm的更高一层的抽象,除了提供一套简单易用的流数据处理API以外,它以batch(一组tuples)为单位进行处理,这样一来,可使得一些处理更简单和高效。

 

 

28 Flink

 

于今年跻身Apache顶级开源项目,与HDFS彻底兼容。Flink提供了基于Java和Scala的API,是一个高效、分布式的通用大数据分析引擎。更主要的是,Flink支持增量迭代计算,使得系统能够快速地处理数据密集型、迭代的任务。

 

 

29 Samza

 

出自于LinkedIn,构建在Kafka之上的分布式流计算框架,是Apache顶级开源项目。可直接利用Kafka和Hadoop YARN提供容错、进程隔离以及安全、资源管理。

 

 

30 Storm

 

Storm是Twitter开源的一个相似于Hadoop的实时数据处理框架。编程模型简单,显著地下降了实时处理的难度,也是当下最人气的流计算框架之一。与其余计算框架相比,Storm最大的优势是毫秒级低延时。

 

 

31 Yahoo S4 (Simple Scalable Streaming System)

 

是一个分布式流计算平台,具有通用、分布式、可扩展的、容错、可插拔等特色,程序员能够很容易地开发处理连续无边界数据流(continuous unbounded streams of data)的应用。它的目标是填补复杂专有系统和面向批处理开源产品之间的空白,并提供高性能计算平台来解决并发处理系统的复杂度。

 

 

32 HaLoop

 

是一个Hadoop MapReduce框架的修改版本,其目标是为了高效支持 迭代,递归数据 分析任务,如PageRank,HITs,K-means,sssp等。

 

 

33 Presto

 

是一个开源的分布式SQL查询引擎,适用于交互式分析查询,可对250PB以上的数据进行快速地交互式分析。Presto的设计和编写是为了解决像Facebook这样规模的商业数据仓库的交互式分析和处理速度的问题。Facebook称Presto的性能比诸如Hive和MapReduce要好上10倍有多。

 

 

34 Drill

 

于2012年8月份由Apache推出,让用户可使用基于SQL的查询,查询Hadoop、NoSQL数据库和云存储服务。它可以运行在上千个节点的服务器集群上,且能在几秒内处理PB级或者万亿条的数据记录。它可用于数据挖掘和即席查询,支持一系列普遍的数据库,包括HBase、MongoDB、MapR-DB、HDFS、MapR-FS、亚马逊S三、Azure Blob Storage、谷歌云存储和Swift。

 

 

35 Phoenix

 

是一个Java中间层,可让开发者在Apache HBase上执行SQL查询。Phoenix彻底使用Java编写,而且提供了一个客户端可嵌入的JDBC驱动。Phoenix查询引擎会将SQL查询转换为一个或多个HBase scan,并编排执行以生成标准的JDBC结果集。

 

 

36 Pig

 

是一种编程语言,它简化了Hadoop常见的工做任务。Pig可加载数据、转换数据以及存储最终结果。Pig最大的做用就是为MapReduce框架实现了一套shell脚本 ,相似咱们一般熟悉的SQL语句。

 

 

37 Hive

 

是基于Hadoop的一个数据仓库工具,能够将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,能够将sql语句转换为MapReduce任务进行运行。 其优势是学习成本低,能够经过类SQL语句快速实现简单的MapReduce统计,没必要开发专门的MapReduce应用,十分适合数据仓库的统计分析。

 

 

38 SparkSQL

 

前身是Shark,SparkSQL抛弃原有Shark的代码并汲取了一些优势,如内存列存储(In-Memory Columnar Storage)、Hive兼容性等。因为摆脱了对Hive的依赖性,SparkSQL不管在数据兼容、性能优化、组件扩展方面都获得了极大的方便。

 

 

39 Stinger

 

原来叫Tez,是下一代Hive,由Hortonworks主导开发,运行在YARN上的DAG计算框架。某些测试下,Stinger能提高10倍左右的性能,同时会让Hive支持更多的SQL。

 

 

40 Tajo

 

目的是在HDFS之上构建一个可靠的、支持关系型数据的分布式数据仓库系统,它的重点是提供低延迟、可扩展的ad-hoc查询和在线数据汇集,以及为更传统的ETL提供工具。

 

 

41 Impala

 

Cloudera 声称,基于SQL的Impala数据库是“面向Apache Hadoop的领先的开源分析数据库”。它能够做为一款独立产品来下载,又是Cloudera的商业大数据产品的一部分。Cloudera Impala 能够直接为存储在HDFS或HBase中的Hadoop数据提供快速、交互式的SQL查询。

 

 

42  Elasticsearch

 

是一个基于Lucene的搜索服务器。它提供了一个分布式、支持多用户的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并做为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,可以达到实时搜索、稳定、可靠、快速、安装使用方便。

 

 

43 Solr

 

基于Apache Lucene,是一种高度可靠、高度扩展的企业搜索平台。知名用户包括eHarmony、西尔斯、StubHub、Zappos、百思买、AT&T、Instagram、Netflix、彭博社和Travelocity。

 

 

44 Shark

 

即Hive on Spark,本质上是经过Hive的HQL解析,把HQL翻译成Spark上的RDD操做,而后经过Hive的metadata获取数据库里的表信息,实际HDFS上的数据和文件,会由Shark获取并放到Spark上运算。Shark的特色就是快,彻底兼容Hive,且能够在shell模式下使用rdd2sql()这样的API,把HQL获得的结果集,继续在scala环境下运算,支持本身编写简单的机器学习或简单分析处理函数,对HQL结果进一步分析计算。

 

 

45 Lucene

 

基于Java的Lucene能够很是迅速地执行全文搜索。据官方网站声称,它在现代硬件上每小时可以检索超过150GB的数据,它拥有强大而高效的搜索算法。

 

 

46 Terracotta

 

声称其BigMemory技术是“世界上数一数二的内存中数据管理平台”,支持简单、可扩展、实时消息,声称在190个国家拥有210万开发人员,全球1000家企业部署了其软件。

 

 

47  Ignite

 

是一种高性能、整合式、分布式的内存中平台,可用于对大规模数据集执行实时计算和处理,速度比传统的基于磁盘的技术或闪存技术高出好几个数量级。该平台包括数据网格、计算网格、服务网格、流媒体、Hadoop加速、高级集群、文件系统、消息传递、事件和数据结构等功能。

 

 

48 GemFire

 

Pivotal宣布它将开放其大数据套件关键组件的源代码,其中包括GemFire内存中NoSQL数据库。它已向Apache软件基金会递交了一项提案,以便在“Geode”的名下管理GemFire数据库的核心引擎。

 

 

49  GridGain

 

由Apache Ignite驱动的GridGrain提供内存中数据结构,用于迅速处理大数据,还提供基于同一技术的Hadoop加速器。

 

 

50 MongoDB

 

是一个基于分布式文件存储的数据库。由C++语言编写。旨在为web应用提供可扩展的高性能数据存储解决方案。介于关系数据库和非关系数据库之间的开源产品,是非关系数据库当中功能最丰富、最像关系数据库的产品。

 

 

来源:艾斯尼勒

 

近期精彩活动(直接点击查看):

相关文章
相关标签/搜索