本文是基于TensorRT 5.0.2基础上,关于其内部的fc_plugin_caffe_mnist例子的分析和介绍。
本例子相较于前面例子的不一样在于,其还包含cpp代码,且此时依赖项还挺多。该例子展现如何使用基于cpp写的plugin,用tensorrt python 绑定接口和caffe解析器一块儿工做的过程。该例子使用cuBLAS和cuDNn实现一个全链接层,而后实现成tensorrt plugin,而后用pybind11生成对应python绑定,这些绑定随后被用来注册为caffe解析器的一部分。html
假设当前路径为:node
TensorRT-5.0.2.6/samples
其对应当前例子文件目录树为:python
# tree python python ├── common.py ├── fc_plugin_caffe_mnist │ ├── CMakeLists.txt │ ├── __init__.py │ ├── plugin │ │ ├── FullyConnected.h │ │ └── pyFullyConnected.cpp │ ├── README.md │ ├── requirements.txt │ └── sample.py
其中:linux
plugin包含FullyConnected 层的plugin:c++
- FullyConnected.h 基于CUDA,cuDNN,cuBLAS实现该插件;
- pyFullyConnected.cpp 生成关于FCPlugin和FCPluginFactory插件的python绑定;
sample.py 使用提供的FullyConnected 层插件运行MNIST网络;git
git clone -b v2.2.3 https://github.com/pybind/pybind11.git
- 安装python包:
Pillow pycuda numpy argparse
- 建立build文件夹,而后进入该文件夹
mkdir build && pushd build
- cmake生成对应Makefile,此处能够自由设定一些参数。若是其中有些依赖不在默认位置路径上,能够cmake手动指定,关于Cmake的文档,可参考
cmake .. -DCUDA_ROOT=/usr/local/cuda-9.0 \ -DPYBIND11_DIR=/root/pybind11/ \ -DPYTHON3_INC_DIR=/usr/local/python3/include/python3.5m/ \ -DNVINFER_LIB=/TensorRT-5.0.2.6/lib/libnvinfer.so \ -D_NVINFER_PLUGIN_LIB=/TensorRT-5.0.2.6/lib/ \ -D_NVPARSERS_LIB=/TensorRT-5.0.2.6/lib \ -DTRT_INC_DIR=/TensorRT-5.0.2.6/include/
注意cmake打出的日志中的VARIABLE_NAME-NOTFOUNDgithub
- 进行编译
make -j32
- 跳出build
popd
首先,按上面编译过程所述,在build文件夹中会须要调用cmake命令,而该命令会读取上一层,也就是CMakeLists.txt,
其中关于find_library, include_directories, add_subdirectory的能够参考cmake-command文档编程
cmake_minimum_required(VERSION 3.2 FATAL_ERROR) # 最小cmake版本限定 project(FCPlugin LANGUAGES CXX C) # 项目名称和对应的编程语言 # 设定一个宏set_ifndef,用于操做当变量未找到时的行为:此处将未找到变量var 设定为val macro(set_ifndef var val) if(NOT ${var}) set(${var} ${val}) endif() message(STATUS "Configurable variable ${var} set to ${${var}}") endmacro() # -------- CONFIGURATION -------- # Set module name here. MUST MATCH the module name specified in the .cpp set_ifndef(PY_MODULE_NAME fcplugin) set(CMAKE_CXX_STANDARD 11) # 设定C++11标注 set(PYBIND11_CPP_STANDARD -std=c++11) # pybind11 defaults to c++14. set_ifndef(PYBIND11_DIR $ENV{HOME}/pybind11/) set_ifndef(CUDA_VERSION 10.0) set_ifndef(CUDA_ROOT /usr/local/cuda-${CUDA_VERSION}) set_ifndef(CUDNN_ROOT ${CUDA_ROOT}) set_ifndef(PYTHON_ROOT /usr/include) set_ifndef(TRT_LIB_DIR /usr/lib/x86_64-linux-gnu) set_ifndef(TRT_INC_DIR /usr/include/x86_64-linux-gnu) # 寻找依赖 message("\nThe following variables are derived from the values of the previous variables unless provided explicitly:\n") find_path(_CUDA_INC_DIR cuda_runtime_api.h HINTS ${CUDA_ROOT} PATH_SUFFIXES include) set_ifndef(CUDA_INC_DIR ${_CUDA_INC_DIR}) find_library(_CUDA_LIB cudart HINTS ${CUDA_ROOT} PATH_SUFFIXES lib lib64) set_ifndef(CUDA_LIB ${_CUDA_LIB}) find_library(_CUBLAS_LIB cublas HINTS ${CUDA_ROOT} PATH_SUFFIXES lib lib64) set_ifndef(CUBLAS_LIB ${_CUBLAS_LIB}) find_path(_CUDNN_INC_DIR cudnn.h HINTS ${CUDNN_ROOT} PATH_SUFFIXES include x86_64-linux-gnu) set_ifndef(CUDNN_INC_DIR ${_CUDNN_INC_DIR}) find_library(_CUDNN_LIB cudnn HINTS ${CUDNN_ROOT} PATH_SUFFIXES lib lib64 x86_64-linux-gnu) set_ifndef(CUDNN_LIB ${_CUDNN_LIB}) find_library(_TRT_INC_DIR NvInfer.h HINTS ${TRT_INC_DIR} PATH_SUFFIXES include x86_64-linux-gnu) set_ifndef(TRT_INC_DIR ${_TRT_INC_DIR}) find_library(_NVINFER_LIB nvinfer HINTS ${TRT_LIB_DIR} PATH_SUFFIXES lib lib64 x86_64-linux-gnu) set_ifndef(NVINFER_LIB ${_NVINFER_LIB}) find_library(_NVPARSERS_LIB nvparsers HINTS ${TRT_LIB_DIR} PATH_SUFFIXES lib lib64 x86_64-linux-gnu) set_ifndef(NVPARSERS_LIB ${_NVPARSERS_LIB}) find_library(_NVINFER_PLUGIN_LIB nvinfer_plugin HINTS ${TRT_LIB_DIR} PATH_SUFFIXES lib lib64 x86_64-linux-gnu) set_ifndef(NVINFER_PLUGIN_LIB ${_NVINFER_PLUGIN_LIB}) find_path(_PYTHON2_INC_DIR Python.h HINTS ${PYTHON_ROOT} PATH_SUFFIXES python2.7) set_ifndef(PYTHON2_INC_DIR ${_PYTHON2_INC_DIR}) find_path(_PYTHON3_INC_DIR Python.h HINTS ${PYTHON_ROOT} PATH_SUFFIXES python3.7 python3.6 python3.5 python3.4) set_ifndef(PYTHON3_INC_DIR ${_PYTHON3_INC_DIR}) # -------- BUILDING -------- # 增长include文件夹路径 include_directories(${TRT_INC_DIR} ${CUDA_INC_DIR} ${CUDNN_INC_DIR} ${PYBIND11_DIR}/include/) # CMAKE_BINARY_DIR:表示build的根路径,这里是在build文件夹增长pybind11文件夹 add_subdirectory(${PYBIND11_DIR} ${CMAKE_BINARY_DIR}/pybind11) # CMAKE_SOURCE_DIR:表示项目的根路径 file(GLOB_RECURSE SOURCE_FILES ${CMAKE_SOURCE_DIR}/plugin/*.cpp) # Bindings library. The module name MUST MATCH the module name specified in the .cpp # 是否支持python3 if(PYTHON3_INC_DIR AND NOT (${PYTHON3_INC_DIR} STREQUAL "None")) pybind11_add_module(${PY_MODULE_NAME} SHARED THIN_LTO ${SOURCE_FILES}) target_include_directories(${PY_MODULE_NAME} BEFORE PUBLIC ${PYTHON3_INC_DIR}) target_link_libraries(${PY_MODULE_NAME} PRIVATE ${CUDNN_LIB} ${CUDA_LIB} ${CUBLAS_LIB} ${NVINFER_LIB} ${NVPARSERS_LIB} ${NVINFER_PLUGIN_LIB}) endif() # 是否支持python2 if(PYTHON2_INC_DIR AND NOT (${PYTHON2_INC_DIR} STREQUAL "None")) # Suffix the cmake target name with a 2 to differentiate from the Python 3 bindings target. pybind11_add_module(${PY_MODULE_NAME}2 SHARED THIN_LTO ${SOURCE_FILES}) target_include_directories(${PY_MODULE_NAME}2 BEFORE PUBLIC ${PYTHON2_INC_DIR}) target_link_libraries(${PY_MODULE_NAME}2 PRIVATE ${CUDNN_LIB} ${CUDA_LIB} ${CUBLAS_LIB} ${NVINFER_LIB} ${NVPARSERS_LIB} ${NVINFER_PLUGIN_LIB}) # Rename to remove the .cpython-35... extension. set_target_properties(${PY_MODULE_NAME}2 PROPERTIES OUTPUT_NAME ${PY_MODULE_NAME} SUFFIX ".so") # Python 2 requires an empty __init__ file to be able to import. file(WRITE ${CMAKE_BINARY_DIR}/__init__.py "") endif()
运行结果如图:
api
如今来看FullyConnected.h,由于长期不写cpp,因此对cpp代码都生疏了数组
#ifndef _FULLY_CONNECTED_H_ #define _FULLY_CONNECTED_H_ #include <cassert> #include <cstring> #include <cuda_runtime_api.h> #include <cudnn.h> #include <cublas_v2.h> #include <stdexcept> #include "NvInfer.h" //在路径 /TensorRT-5.0.2.6/include/ #include "NvCaffeParser.h" //在路径 /TensorRT-5.0.2.6/include/ #define CHECK(status) { if (status != 0) throw std::runtime_error(__FILE__ + __LINE__ + std::string{"CUDA Error: "} + std::to_string(status)); } // 将数据从host移动到device nvinfer1::Weights copyToDevice(const void* hostData, int count) { void* deviceData; CHECK(cudaMalloc(&deviceData, count * sizeof(float))); CHECK(cudaMemcpy(deviceData, hostData, count * sizeof(float), cudaMemcpyHostToDevice)); return nvinfer1::Weights{nvinfer1::DataType::kFLOAT, deviceData, count}; } //将数据从device移动到host int copyFromDevice(char* hostBuffer, nvinfer1::Weights deviceWeights) { *reinterpret_cast<int*>(hostBuffer) = deviceWeights.count; CHECK(cudaMemcpy(hostBuffer + sizeof(int), deviceWeights.values, deviceWeights.count * sizeof(float), cudaMemcpyDeviceToHost)); return sizeof(int) + deviceWeights.count * sizeof(float); } //----------------------------- /*创建FCPlugin类*/ class FCPlugin: public nvinfer1::IPluginExt { public: // In this simple case we're going to infer the number of output channels from the bias weights. // The knowledge that the kernel weights are weights[0] and the bias weights are weights[1] was // divined from the caffe innards FCPlugin(const nvinfer1::Weights* weights, int nbWeights) { assert(nbWeights == 2); mKernelWeights = copyToDevice(weights[0].values, weights[0].count); mBiasWeights = copyToDevice(weights[1].values, weights[1].count); } // 构造函数,用于从一个字节流中建立plugin FCPlugin(const void* data, size_t length) { const char* d = reinterpret_cast<const char*>(data), *a = d; mKernelWeights = copyToDevice(d + sizeof(int), reinterpret_cast<const int&>(d)); d += sizeof(int) + mKernelWeights.count * sizeof(float); mBiasWeights = copyToDevice(d + sizeof(int), reinterpret_cast<const int&>(d)); d += sizeof(int) + mBiasWeights.count * sizeof(float); assert(d == a + length); } virtual int getNbOutputs() const override { return 1; } virtual nvinfer1::Dims getOutputDimensions(int index, const nvinfer1::Dims* inputs, int nbInputDims) override { assert(index == 0 && nbInputDims == 1 && inputs[0].nbDims == 3); return nvinfer1::DimsCHW{static_cast<int>(mBiasWeights.count), 1, 1}; } virtual int initialize() override { CHECK(cudnnCreate(&mCudnn)); CHECK(cublasCreate(&mCublas)); // Create cudnn tensor descriptors for bias addition. CHECK(cudnnCreateTensorDescriptor(&mSrcDescriptor)); CHECK(cudnnCreateTensorDescriptor(&mDstDescriptor)); return 0; } virtual void terminate() override { CHECK(cudnnDestroyTensorDescriptor(mSrcDescriptor)); CHECK(cudnnDestroyTensorDescriptor(mDstDescriptor)); CHECK(cublasDestroy(mCublas)); CHECK(cudnnDestroy(mCudnn)); } // This plugin requires no workspace memory during build time. virtual size_t getWorkspaceSize(int maxBatchSize) const override { return 0; } virtual int enqueue(int batchSize, const void* const* inputs, void** outputs, void* workspace, cudaStream_t stream) override { int nbOutputChannels = mBiasWeights.count; int nbInputChannels = mKernelWeights.count / nbOutputChannels; constexpr float kONE = 1.0f, kZERO = 0.0f; // Do matrix multiplication. cublasSetStream(mCublas, stream); cudnnSetStream(mCudnn, stream); CHECK(cublasSgemm(mCublas, CUBLAS_OP_T, CUBLAS_OP_N, nbOutputChannels, batchSize, nbInputChannels, &kONE, reinterpret_cast<const float*>(mKernelWeights.values), nbInputChannels, reinterpret_cast<const float*>(inputs[0]), nbInputChannels, &kZERO, reinterpret_cast<float*>(outputs[0]), nbOutputChannels)); // Add bias. CHECK(cudnnSetTensor4dDescriptor(mSrcDescriptor, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, nbOutputChannels, 1, 1)); CHECK(cudnnSetTensor4dDescriptor(mDstDescriptor, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batchSize, nbOutputChannels, 1, 1)); CHECK(cudnnAddTensor(mCudnn, &kONE, mSrcDescriptor, mBiasWeights.values, &kONE, mDstDescriptor, outputs[0])); return 0; } // For this sample, we'll only support float32 with NCHW. virtual bool supportsFormat(nvinfer1::DataType type, nvinfer1::PluginFormat format) const override { return (type == nvinfer1::DataType::kFLOAT && format == nvinfer1::PluginFormat::kNCHW); } void configureWithFormat(const nvinfer1::Dims* inputDims, int nbInputs, const nvinfer1::Dims* outputDims, int nbOutputs, nvinfer1::DataType type, nvinfer1::PluginFormat format, int maxBatchSize) { assert(nbInputs == 1 && inputDims[0].d[1] == 1 && inputDims[0].d[2] == 1); assert(nbOutputs == 1 && outputDims[0].d[1] == 1 && outputDims[0].d[2] == 1); assert(mKernelWeights.count == inputDims[0].d[0] * inputDims[0].d[1] * inputDims[0].d[2] * mBiasWeights.count); } virtual size_t getSerializationSize() override { return sizeof(int) * 2 + mKernelWeights.count * sizeof(float) + mBiasWeights.count * sizeof(float); } virtual void serialize(void* buffer) override { char* d = reinterpret_cast<char*>(buffer), *a = d; d += copyFromDevice(d, mKernelWeights); d += copyFromDevice(d, mBiasWeights); assert(d == a + getSerializationSize()); } // 析构函数,释放buffer. virtual ~FCPlugin() { cudaFree(const_cast<void*>(mKernelWeights.values)); mKernelWeights.values = nullptr; cudaFree(const_cast<void*>(mBiasWeights.values)); mBiasWeights.values = nullptr; } private: cudnnHandle_t mCudnn; cublasHandle_t mCublas; nvinfer1::Weights mKernelWeights{nvinfer1::DataType::kFLOAT, nullptr}, mBiasWeights{nvinfer1::DataType::kFLOAT, nullptr}; cudnnTensorDescriptor_t mSrcDescriptor, mDstDescriptor; }; /*创建FCPluginFactory类*/ class FCPluginFactory : public nvcaffeparser1::IPluginFactoryExt, public nvinfer1::IPluginFactory { public: bool isPlugin(const char* name) override { return isPluginExt(name); } bool isPluginExt(const char* name) override { return !strcmp(name, "ip2"); } // Create a plugin using provided weights. virtual nvinfer1::IPlugin* createPlugin(const char* layerName, const nvinfer1::Weights* weights, int nbWeights) override { assert(isPluginExt(layerName) && nbWeights == 2); assert(mPlugin == nullptr); // This plugin will need to be manually destroyed after parsing the network, by calling destroyPlugin. mPlugin = new FCPlugin{weights, nbWeights}; return mPlugin; } // Create a plugin from serialized data. virtual nvinfer1::IPlugin* createPlugin(const char* layerName, const void* serialData, size_t serialLength) override { assert(isPlugin(layerName)); // This will be automatically destroyed when the engine is destroyed. return new FCPlugin{serialData, serialLength}; } // User application destroys plugin when it is safe to do so. // Should be done after consumers of plugin (like ICudaEngine) are destroyed. void destroyPlugin() { delete mPlugin; } FCPlugin* mPlugin{ nullptr }; }; #endif //_FULLY_CONNECTED_H
如今来看pyFullyConnected.cpp该源码中用到了pybind11,关于其文档
#include "FullyConnected.h" #include "NvInfer.h" #include "NvCaffeParser.h" #include <pybind11/pybind11.h> PYBIND11_MODULE(fcplugin, m) { namespace py = pybind11; // 以python方式导入tensorrt模块. py::module::import("tensorrt"); // Note that we only need to bind the constructors manually. Since all other methods override IPlugin functionality, they will be automatically available in the python bindings. // The `std::unique_ptr<FCPlugin, py::nodelete>` specifies that Python is not responsible for destroying the object. This is required because the destructor is private. py::class_<FCPlugin, nvinfer1::IPluginExt, std::unique_ptr<FCPlugin, py::nodelete>>(m, "FCPlugin") // Bind the normal constructor as well as the one which deserializes the plugin .def(py::init<const nvinfer1::Weights*, int>()) .def(py::init<const void*, size_t>()) ; // Since the createPlugin function overrides IPluginFactory functionality, we do not need to explicitly bind it here. // We specify py::multiple_inheritance because we have not explicitly specified nvinfer1::IPluginFactory as a base class. py::class_<FCPluginFactory, nvcaffeparser1::IPluginFactoryExt>(m, "FCPluginFactory", py::multiple_inheritance()) // Bind the default constructor. .def(py::init<>()) // The destroy_plugin function does not override the base class, so we must bind it explicitly. .def("destroy_plugin", &FCPluginFactory::destroyPlugin) ; }
cpp的代码就先不解释了。。。
接着分析sample.py
# This sample uses a Caffe model along with a custom plugin to create a TensorRT engine. from random import randint from PIL import Image import numpy as np import pycuda.driver as cuda import pycuda.autoinit import tensorrt as trt try: from build import fcplugin except ImportError as err: raise ImportError("""ERROR: Failed to import module ({}) Please build the FullyConnected sample plugin. For more information, see the included README.md Note that Python 2 requires the presence of `__init__.py` in the build folder""".format(err)) import sys, os sys.path.insert(1, os.path.join(sys.path[0], "..")) # import common # 这里将common中的GiB和find_sample_data,do_inference等函数移动到该py文件中,保证自包含。 def GiB(val): '''以GB为单位,计算所须要的存储值,向左位移10bit表示KB,20bit表示MB ''' return val * 1 << 30 def find_sample_data(description="Runs a TensorRT Python sample", subfolder="", find_files=[]): '''该函数就是一个参数解析函数。 Parses sample arguments. Args: description (str): Description of the sample. subfolder (str): The subfolder containing data relevant to this sample find_files (str): A list of filenames to find. Each filename will be replaced with an absolute path. Returns: str: Path of data directory. Raises: FileNotFoundError ''' # 为了简洁,这里直接将路径硬编码到代码中。 data_root = kDEFAULT_DATA_ROOT = os.path.abspath("/TensorRT-5.0.2.6/python/data/") subfolder_path = os.path.join(data_root, subfolder) if not os.path.exists(subfolder_path): print("WARNING: " + subfolder_path + " does not exist. Using " + data_root + " instead.") data_path = subfolder_path if os.path.exists(subfolder_path) else data_root if not (os.path.exists(data_path)): raise FileNotFoundError(data_path + " does not exist.") for index, f in enumerate(find_files): find_files[index] = os.path.abspath(os.path.join(data_path, f)) if not os.path.exists(find_files[index]): raise FileNotFoundError(find_files[index] + " does not exist. ") if find_files: return data_path, find_files else: return data_path #----------------- TRT_LOGGER = trt.Logger(trt.Logger.WARNING) class ModelData(object): INPUT_NAME = "input" INPUT_SHAPE = (1, 28, 28) OUTPUT_NAME = "prob" OUTPUT_SHAPE = (10, ) DTYPE = trt.float32 # 用一个解析器从binary_proto中检索mean data. def retrieve_mean(mean_proto): with trt.CaffeParser() as parser: return parser.parse_binary_proto(mean_proto) # 建立解析器的plugin factory. 设定成全局是由于能够在engine销毁以后再销毁. fc_factory = fcplugin.FCPluginFactory() '''main第二步:构建engine ''' def build_engine(deploy_file, model_file): with trt.Builder(TRT_LOGGER) as builder, \ builder.create_network() as network, \ trt.CaffeParser() as parser: builder.max_workspace_size = GiB(1) # 设定解析器的plugin factory。这里将其绑定到引用是为了后续可以手动销毁 # parser.plugin_factory_ext 是一个 write-only属性 ''' plugin_factory_ext是CaffeParser特有的接口,为了接入用户定义的组件 https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Caffe/pyCaffe.html?highlight=plugin_factory_ext ''' parser.plugin_factory_ext = fc_factory # 解析该模型,并构建engine model_tensors = parser.parse(deploy=deploy_file, model=model_file, network=network, dtype=ModelData.DTYPE) # 标记网络的输出 network.mark_output(model_tensors.find(ModelData.OUTPUT_NAME)) return builder.build_cuda_engine(network) '''main中第三步:分配buffer ''' def allocate_buffers(engine): inputs = [] outputs = [] bindings = [] stream = cuda.Stream() for binding in engine: size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size dtype = trt.nptype(engine.get_binding_dtype(binding)) # 分配host和device端的buffer host_mem = cuda.pagelocked_empty(size, dtype) device_mem = cuda.mem_alloc(host_mem.nbytes) # 将device端的buffer追加到device的bindings. bindings.append(int(device_mem)) # Append to the appropriate list. if engine.binding_is_input(binding): inputs.append(HostDeviceMem(host_mem, device_mem)) else: outputs.append(HostDeviceMem(host_mem, device_mem)) return inputs, outputs, bindings, stream '''main中第四步:选择测试样本 ''' def load_normalized_test_case(data_path, pagelocked_buffer, mean, case_num=randint(0, 9)): test_case_path = os.path.join(data_path, str(case_num) + ".pgm") # Flatten图像为1维数组,而后归一化,并copy到pagelocked内存中。 img = np.array(Image.open(test_case_path)).ravel() np.copyto(pagelocked_buffer, img - mean) return case_num '''main中第五步:执行inference ''' # 该函数能够适应多个输入/输出;输入和输出格式为HostDeviceMem对象组成的列表 def do_inference(context, bindings, inputs, outputs, stream, batch_size=1): # 将数据移动到GPU [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs] # 执行inference. context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream.handle) # 将结果从 GPU写回到host端 [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs] # 同步stream stream.synchronize() # 返回host端的输出结果 return [out.host for out in outputs] def main(): ''' 1 - 读取caffe生成的模型文件''' data_path, [deploy_file, model_file, mean_proto] = find_sample_data( description="Runs an MNIST network using a Caffe model file", subfolder="mnist", find_files=["mnist.prototxt", "mnist.caffemodel", "mnist_mean.binaryproto"]) ''' 2 - 基于build_engine构建engine''' with build_engine(deploy_file, model_file) as engine: ''' 3 - 构建engine, 分配buffers, 建立一个流 ''' inputs, outputs, bindings, stream = allocate_buffers(engine) mean = retrieve_mean(mean_proto) with engine.create_execution_context() as context: ''' 4 - 读取测试样本,并归一化''' case_num = load_normalized_test_case(data_path, inputs[0].host, mean) ''' 5 -执行inference,do_inference函数会返回一个list类型,此处只有一个元素 ''' [output] = do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream) pred = np.argmax(output) print("Test Case: " + str(case_num)) print("Prediction: " + str(pred)) ''' 6 - 在engine销毁以后,这里手动销毁plugin''' fc_factory.destroy_plugin() if __name__ == "__main__": main()
运行结果如图: