SQL Server 之 GROUP BY、GROUPING SETS、ROLLUP、CUBE

1.建立表 Staffhtml

CREATE TABLE [dbo].[Staff](
    [ID] [int] IDENTITY(1,1) NOT NULL,
    [Name] [varchar](50) NULL,
    [Sex] [varchar](50) NULL,
    [Department] [varchar](50) NULL,
    [Money] [int] NULL,
    [CreateDate] [datetime] NULL
) ON [PRIMARY]

GO

 

2.为Staff表填充数据函数

INSERT INTO [dbo].[Staff]([Name],[Sex],[Department],[Money],[CreateDate])
SELECT 'Name1','','技术部',3000,'2011-11-12'
UNION ALL
SELECT 'Name2','','工程部',4000,'2013-11-12'
UNION ALL
SELECT 'Name3','','工程部',3000,'2013-11-12'
UNION ALL
SELECT 'Name4','','技术部',5000,'2012-11-12'
UNION ALL
SELECT 'Name5','','技术部',6000,'2011-11-12'
UNION ALL
SELECT 'Name6','','技术部',4000,'2013-11-12'
UNION ALL
SELECT 'Name7','','技术部',5000,'2012-11-12'
UNION ALL
SELECT 'Name8','','工程部',3000,'2012-11-12'
UNION ALL
SELECT 'Name9','','工程部',6000,'2011-11-12'
UNION ALL
SELECT 'Name10','','工程部',3000,'2011-11-12'
UNION ALL
SELECT 'Name11','','技术部',3000,'2011-11-12'
 

 

GROUP BY 分组查询, 通常和聚合函数配合使用性能

SELECT  [DEPARTMENT],SEX, COUNT(1)
FROM DBO.[STAFF] 
GROUP BY SEX, [DEPARTMENT]  

该段SQL是用于查询   某个部门下的男女员工数量 其数据结果以下
spa

开销比较大 code

 

GROUPING SETShtm

使用 GROUPING SETS 的 GROUP BY 子句能够生成一个等效于由多个简单 GROUP BY 子句的 UNION ALL 生成的结果集,而且其效率比 GROUP BY 要高,SQL Server 2008引入。 blog

1.使用GROUP BY 子句的 UNION ALL 来统计 Staff 表中的性别、部门、薪资、入职年份内存

SET STATISTICS IO ON  
SET STATISTICS TIME ON

SELECT N'总人数' ,'',COUNT(0) FROM [DBO].[STAFF]
UNION ALL  
SELECT N'按性别划分', SEX,COUNT(0) FROM  [DBO].[STAFF] GROUP BY SEX  
UNION ALL  
SELECT N'按部门统计',[DEPARTMENT],COUNT(0) FROM  [DBO].[STAFF] GROUP BY [DEPARTMENT]  
UNION ALL  
SELECT N'按薪资统计',CONVERT(VARCHAR(10),[MONEY]),COUNT(0) FROM  [DBO].[STAFF] GROUP BY  [MONEY] 
UNION ALL  
SELECT N'按入职年份',CONVERT(VARCHAR(10),YEAR([CREATEDATE])),COUNT(0) FROM  [DBO].[STAFF] GROUP BY YEAR([CREATEDATE])  
 


2.换成GROUPING SETS的写法class

SET STATISTICS IO ON  
SET STATISTICS TIME ON  
GO
SELECT (CASE  
WHEN GROUPING_ID(SEX,[DEPARTMENT],[MONEY],YEAR([CREATEDATE]))=15 THEN N'总人数' 
WHEN GROUPING_ID(SEX,[DEPARTMENT],[MONEY],YEAR([CREATEDATE]))=7 THEN N'按性别划分'  
WHEN GROUPING_ID(SEX,[DEPARTMENT],[MONEY],YEAR([CREATEDATE]))=11 THEN N'按部门统计'  
WHEN GROUPING_ID(SEX,[DEPARTMENT],[MONEY],YEAR([CREATEDATE]))=13 THEN N'按薪资统计'   
WHEN GROUPING_ID(SEX,[DEPARTMENT],[MONEY],YEAR([CREATEDATE]))=14 THEN N'按入职年份'   
END  
),
(CASE  
WHEN GROUPING_ID(SEX,[DEPARTMENT],[MONEY],YEAR([CREATEDATE]))=15 THEN ''
WHEN GROUPING_ID(SEX,[DEPARTMENT],[MONEY],YEAR([CREATEDATE]))=7 THEN SEX  
WHEN GROUPING_ID(SEX,[DEPARTMENT],[MONEY],YEAR([CREATEDATE]))=11 THEN [DEPARTMENT]  
WHEN GROUPING_ID(SEX,[DEPARTMENT],[MONEY],YEAR([CREATEDATE]))=13 THEN CONVERT(VARCHAR(10),[MONEY])   
WHEN GROUPING_ID(SEX,[DEPARTMENT],[MONEY],YEAR([CREATEDATE]))=14 THEN CONVERT(VARCHAR(10),YEAR([CREATEDATE]))   
END  
) 
,
COUNT(1) 
FROM DBO.[STAFF]
GROUP BY GROUPING SETS (SEX,[DEPARTMENT],[MONEY],YEAR([CREATEDATE]),())
 

从上述结果中能够看出,采用UNION ALL 是屡次扫描表,并将扫描后的查询结果进行组合操做,会增长IO开销,减小CPU和内存开销。效率

采用GROUPING SETS 是一次性读取全部数据,并在内存中进行聚合操做生成结果,减小IO开销,对CPU和内存消耗增长。但GROUPING SETS 在多列分组时,其性能会比group by高。

这里扫描四次是由于我 GROUP BY GROUPING SETS (SEX,[DEPARTMENT],[MONEY],YEAR([CREATEDATE]),()) 了四列

 

ROLLUP与CUBE 

ROLLUP与CUBE  按必定的规则产生多种分组,而后按各类分组统计数据

ROLLUP与CUBE 区别:

  CUBE 会对全部的分组字段进行统计,而后合计。

  ROLLUP 按照分组顺序,对第一个字段进行组内统计,最后给出合计。
 
下面看我查询 
SELECT  
      CASE WHEN (GROUPING(SEX) = 1) THEN '统计-ROLLUP' 
            ELSE ISNULL(SEX, 'UNKNOWN') 
       END AS SEX ,
        COUNT(0)
FROM DBO.[STAFF] 
GROUP BY   SEX   WITH ROLLUP

SELECT  
      CASE WHEN (GROUPING(SEX) = 1) THEN '统计-CUBE' 
            ELSE ISNULL(SEX, 'UNKNOWN') 
       END AS SEX ,
        COUNT(0)
FROM DBO.[STAFF] 
GROUP BY   SEX   WITH CUBE

看不出差异,咱们再加一列
SELECT  
      CASE WHEN (GROUPING(SEX) = 1) THEN '统计-ROLLUP' 
            ELSE ISNULL(SEX, 'UNKNOWN') 
       END AS SEX , 
      CASE WHEN (GROUPING([DEPARTMENT]) = 1) THEN '统计-ROLLUP' 
            ELSE ISNULL([DEPARTMENT], 'UNKNOWN') 
       END AS [DEPARTMENT], 
        COUNT(0) 
FROM DBO.[STAFF] 
GROUP BY   SEX,[DEPARTMENT]   WITH ROLLUP

SELECT  
      CASE WHEN (GROUPING(SEX) = 1) THEN '统计-CUBE' 
            ELSE ISNULL(SEX, 'UNKNOWN') 
       END AS SEX ,
      CASE WHEN (GROUPING([DEPARTMENT]) = 1) THEN  '统计-CUBE' 
            ELSE ISNULL([DEPARTMENT], 'UNKNOWN') 
       END AS [DEPARTMENT], 
        COUNT(0) 
FROM DBO.[STAFF] 
GROUP BY   SEX,[DEPARTMENT]  WITH CUBE

能够看出 使用 ROLLUP 会先统计分组下的,而后在对GROUP BY的第一列字段进行统计,最后计算总数,而 CUBE 则是先分组统计,而后统计GRUOP BY 的每一个字段,最后进行汇总。

 

 http://www.cnblogs.com/woxpp/p/4688715.html 

相关文章
相关标签/搜索