本文适用于CentOS 6.4, CentOS 6.5,估计也适用于其余Linux发行版。html
[root@hostname ~]# uname -r 2.6.32-220.el6.x86_64 [root@hostname ~]# cat /etc/centos-release CentOS release 6.5 (Final)
编译安装新内核,依赖于开发环境和开发库linux
# yum grouplist //查看已经安装的和未安装的软件包组,来判断咱们是否安装了相应的开发环境和开发库; # yum groupinstall "Development Tools" //通常是安装这两个软件包组,这样作会肯定你拥有编译时所需的一切工具 # yum install ncurses-devel //你必须这样才能让 make *config 这个指令正确地执行 # yum install qt-devel //若是你没有 X 环境,这一条能够不用 # yum install hmaccalc zlib-devel binutils-devel elfutils-libelf-devel //建立 CentOS-6 内核时须要它们
若是当初安装系统是选择了Software workstation,上面的安装包几乎都已包含。git
Linux内核版本有两种:稳定版和开发版 ,Linux内核版本号由3个数字组成:r.x.ygithub
去 http://www.kernel.org 首页,能够看到有stable, longterm等版本,longterm是比stable更稳定的版本,会长时间更新,所以我选择 3.10.58。docker
wget https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.10.28.tar.xz[root@sean ~]#
[root@sean ~]# tar -xf linux-3.10.58.tar.xz -C /usr/src/ [root@sean ~]# cd /usr/src/linux-3.10.58/ [root@sean linux-3.10.58]# cp /boot/config-2.6.32-220.el6.x86_64 .config
咱们在系统原有的内核配置文件的基础上创建新的编译选项,因此复制一份到当前目录下,命名为.config。接下来继续配置:segmentfault
[root@sean linux-3.10.58]# sh -c 'yes "" | make oldconfig' HOSTCC scripts/basic/fixdep HOSTCC scripts/kconfig/conf.o SHIPPED scripts/kconfig/zconf.tab.c SHIPPED scripts/kconfig/zconf.lex.c SHIPPED scripts/kconfig/zconf.hash.c HOSTCC scripts/kconfig/zconf.tab.o HOSTLD scripts/kconfig/conf scripts/kconfig/conf --oldconfig Kconfig .config:555:warning: symbol value 'm' invalid for PCCARD_NONSTATIC .config:2567:warning: symbol value 'm' invalid for MFD_WM8400 .config:2568:warning: symbol value 'm' invalid for MFD_WM831X .config:2569:warning: symbol value 'm' invalid for MFD_WM8350 .config:2582:warning: symbol value 'm' invalid for MFD_WM8350_I2C .config:2584:warning: symbol value 'm' invalid for AB3100_CORE .config:3502:warning: symbol value 'm' invalid for MMC_RICOH_MMC * * Restart config... * * * General setup * ... ... XZ decompressor tester (XZ_DEC_TEST) [N/m/y/?] (NEW) Averaging functions (AVERAGE) [Y/?] (NEW) y CORDIC algorithm (CORDIC) [N/m/y/?] (NEW) JEDEC DDR data (DDR) [N/y/?] (NEW) # # configuration written to .config
make oldconfig
会读取当前目录下的.config
文件,在.config
文件里没有找到的选项则提示用户填写,而后备份.config
文件为.config.old
,并生成新的.config
文件,参考http://stackoverflow.com/questions/4178526/what-does-make-oldconfig-do-exactly-linux-kernel-makefilecentos
有的文档里介绍使用make memuconfig,它即是根据须要定制模块,相似界面以下:(在此不须要)ruby
[root@sean linux-3.10.58]# make -j4 bzImage //生成内核文件 [root@sean linux-3.10.58]# make -j4 modules //编译模块 [root@sean linux-3.10.58]# make -j4 modules_install //编译安装模块
-j后面的数字是线程数,用于加快编译速度,通常的经验是,逻辑CPU,就填写那个数字,例若有8核,则为-j8。(modules部分耗时30多分钟)bash
[root@sean linux-3.10.58]# make install
实际运行到这一步时,出现ERROR: modinfo: could not find module vmware_balloon
,可是不影响内核安装,是因为vsphere须要的模块没有编译,要避免这个问题,须要在make以前时修改.config文件,加入
HYPERVISOR_GUEST=yCONFIG_VMWARE_BALLOON=m
(这一部分比较容易出问题,参考下文异常部分)服务器
安装完成后,须要修改Grub引导顺序,让新安装的内核做为默认内核。
编辑 grub.conf文件,
vi /etc/grub.conf
#boot=/dev/sda default=0 timeout=5 splashimage=(hd0,0)/grub/splash.xpm.gz hiddenmenu title CentOS (3.10.58) root (hd0,0) ...
数一下刚刚新安装的内核在哪一个位置,从0开始,而后设置default为那个数字,通常新安装的内核在第一个位置,因此设置default=0。
重启reboot
:
[root@sean ~]# uname -r 3.10.58
升级内核成功!
能够先清除,再从新编译:
# make mrproper #完成或者安装过程出错,能够清理上次编译的现场 # make clean
[root@sean linux-3.10.58]# make install sh /usr/src/linux-3.10.58/arch/x86/boot/install.sh 3.10.58 arch/x86/boot/bzImage \ System.map "/boot" ERROR: modinfo: could not find module vmware_balloon
能够忽略,若是你有强迫症的话,尝试如下办法:
要在vmware上须要安装VMWARE_BALLOON,可直接修改.config文件,但若是vi直接加入CONFIG_VMWARE_BALLOON=m
依然是没有效果的,由于它依赖于HYPERVISOR_GUEST=y
。若是你不知道这层依赖关系,经过make menuconfig
后,Device Drivers -> MISC devices 下是找不到VMware Balloon Driver的。(手动vi .config修改HYPERVISOR_GUEST后,即可以找到这一项),另外,不管是经过make menuconfig或直接vi .config,最后都要运行sh -c 'yes "" | make oldconfig'
一次获得最终的编译配置选项。
而后,考虑到vmware_balloon可能在这个版本里已改名为vmw_balloon,经过下面的方法保险起见:
# cd /lib/modules/3.10.58/kernel/drivers/misc/ # ln -s vmw_balloon.ko vmware_balloon.ko #创建软链接
其实,针对安装docker的内核编译环境,最明智的选择是使用sciurus帮咱们配置好的.config文件。
也建议在make bzImage
以前,运行脚本check-config.sh检查当前内核运行docker所缺失的模块。
当提示缺乏其余module时如NF_NAT_IPV4时,也能够经过上面的方法解决,而后从新编译。
在网络中,很多服务器采用的是Linux系统。为了进一步提升服务器的性能,可能须要根据特定的硬件及需求从新编译Linux内核。编译Linux内核,须要根据规定的步骤进行,编译内核过程当中涉及到几个重要的文件。好比对于RedHat Linux,在/boot目录下有一些与Linux内核有关的文件,进入/boot执行:ls –l。编译过RedHat Linux内核的人对其中的System.map 、vmlinuz、initrd-2.4.7-10.img印象可能比较深入,由于编译内核过程当中涉及到这些文件的创建等操做。那么这几个文件是怎么产生的?又有什么做用呢?
vmlinuz是可引导的、压缩的内核。“vm”表明“Virtual Memory”。Linux 支持虚拟内存,不像老的操做系统好比DOS有640KB内存的限制。Linux可以使用硬盘空间做为虚拟内存,所以得名“vm”。vmlinuz是可执行的Linux内核,它位于/boot/vmlinuz,它通常是一个软连接。
vmlinuz的创建有两种方式。
一是编译内核时经过“make zImage”建立,而后经过:“cp /usr/src/linux-2.4/arch/i386/linux/boot/zImage /boot/vmlinuz”产生。zImage适用于小内核的状况,它的存在是为了向后的兼容性。
二是内核编译时经过命令make bzImage建立,而后经过:“cp /usr/src/linux-2.4/arch/i386/linux/boot/bzImage /boot/vmlinuz”产生。
bzImage是压缩的内核映像,须要注意,bzImage不是用bzip2压缩的,bzImage中的bz容易引发误解,bz表示“big zImage”。 bzImage中的b是“big”意思。
zImage(vmlinuz)和bzImage(vmlinuz)都是用gzip压缩的。它们不只是一个压缩文件,并且在这两个文件的开头部份内嵌有gzip解压缩代码。因此你不能用gunzip 或 gzip –dc解包vmlinuz。
内核文件中包含一个微型的gzip用于解压缩内核并引导它。二者的不一样之处在于,老的zImage解压缩内核到低端内存(第一个640K),bzImage解压缩内核到高端内存(1M以上)。若是内核比较小,那么能够采用zImage 或bzImage之一,两种方式引导的系统运行时是相同的。大的内核采用bzImage,不能采用zImage。
vmlinux是未压缩的内核,vmlinuz是vmlinux的压缩文件。
(2) initrd-x.x.x.img
initrd是“initial ramdisk”的简写。initrd通常被用来临时的引导硬件到实际内核vmlinuz可以接管并继续引导的状态。好比,使用的是scsi硬盘,而内核vmlinuz中并无这个scsi硬件的驱动,那么在装入scsi模块以前,内核不能加载根文件系统,但scsi模块存储在根文件系统的/lib/modules下。为了解决这个问题,能够引导一个可以读实际内核的initrd内核并用initrd修正scsi引导问题。initrd-2.4.7-10.img是用gzip压缩的文件,下面来看一看这个文件的内容。
initrd实现加载一些模块和安装文件系统等。
initrd映象文件是使用mkinitrd建立的。mkinitrd实用程序可以建立initrd映象文件。这个命令是RedHat专有的。其它Linux发行版或许有相应的命令。这是个很方便的实用程序。具体状况请看帮助:man mkinitrd
下面的命令建立initrd映象文件:
(3) System.map
System.map是一个特定内核的内核符号表。它是你当前运行的内核的System.map的连接。
内核符号表是怎么建立的呢? System.map是由“nm vmlinux”产生而且不相关的符号被滤出。对于本文中的例子,编译内核时,System.map建立在/usr/src/linux-2.4/System.map。像下面这样:
nm /boot/vmlinux-2.4.7-10 > System.map
下面几行来自/usr/src/linux-2.4/Makefile:
nm vmlinux | grep -v '(compiled)|(.o
)|(LASH[RL]DI)' | sort > System.map
而后复制到/boot:
cp /usr/src/linux/System.map /boot/System.map-2.4.7-10
在进行程序设计时,会命名一些变量名或函数名之类的符号。Linux内核是一个很复杂的代码块,有许许多多的全局符号。
Linux内核不使用符号名,而是经过变量或函数的地址来识别变量或函数名。好比不是使用size_t BytesRead这样的符号,而是像c0343f20这样引用这个变量。
对于使用计算机的人来讲,更喜欢使用那些像size_t BytesRead这样的名字,而不喜欢像c0343f20这样的名字。内核主要是用c写的,因此编译器/链接器容许咱们编码时使用符号名,当内核运行时使用地址。
然而,在有的状况下,咱们须要知道符号的地址,或者须要知道地址对应的符号。这由符号表来完成,符号表是全部符号连同它们的地址的列表。Linux 符号表使用到2个文件:/proc/ksyms和System.map。
/proc/ksyms是一个“proc file”,在内核引导时建立。实际上,它并不真正的是一个文件,它只不过是内核数据的表示,却给人们是一个磁盘文件的假象,这从它的文件大小是0能够看出来。然而,System.map是存在于你的文件系统上的实际文件。当你编译一个新内核时,各个符号名的地址要发生变化,你的老的System.map具备的是错误的符号信息。每次内核编译时产生一个新的System.map,你应当用新的System.map来取代老的System.map。
虽然内核自己并不真正使用System.map,但其它程序好比klogd, lsof和ps等软件须要一个正确的System.map。若是你使用错误的或没有System.map,klogd的输出将是不可靠的,这对于排除程序故障会带来困难。没有System.map,你可能会面临一些使人烦恼的提示信息。
另外少数驱动须要System.map来解析符号,没有为你当前运行的特定内核建立的System.map它们就不能正常工做。
Linux的内核日志守护进程klogd为了执行名称-地址解析,klogd须要使用System.map。System.map应当放在使用它的软件可以找到它的地方。执行:man klogd可知,若是没有将System.map做为一个变量的位置给klogd,那么它将按照下面的顺序,在三个地方查找System.map:
/boot/System.map
/System.map
/usr/src/linux/System.map
System.map也有版本信息,klogd可以智能地查找正确的映象(map)文件。