欠拟合、过拟合、偏差、方差

1. 基本概念 偏差:偏差度量了学习算法的期望预测与真实结果的偏离程度, 即刻画了学习算法本身的拟合能力。 方差:方差度量了同样大小的训练集的变动所导致的学习性能的变化, 即刻画了数据扰动所造成的影响。 欠拟合:模型的经验误差大,模型太简单,在训练的过程中基本没学到有价值的内容,说明模型欠拟合。 过拟合:模型学习了太多的训练样本的“个性”(经验误差小),但是对于未知的样本泛化能力差(泛化误差大),
相关文章
相关标签/搜索