(PS:原博客戳这里。原博主写的太好了,因此直接转载过来。为了本身可以学习清楚,我将代码部分删掉替换成本身写的代码,方便之后查看。)html
十种常见排序算法能够分为两大类:算法
0.3 相关概念数组
冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,若是它们的顺序错误就把它们交换过来。走访数列的工做是重复地进行直到没有再须要交换,也就是说该数列已经排序完成。这个算法的名字由来是由于越小的元素会经由交换慢慢“浮”到数列的顶端。 数据结构
1.2 动图演示ide
public static void bubbleSort(int[] array) { for (int i = 0; i < array.length; i++) { for (int j = 0; j < array.length - 1 - i; j++) { if (array[j + 1] < array[j]) { int tmp = array[j + 1]; array[j + 1] = array[j]; array[j] = tmp; } } } }
选择排序(Selection-sort)是一种简单直观的排序算法。它的工做原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,而后,再从剩余未排序元素中继续寻找最小(大)元素,而后放到已排序序列的末尾。以此类推,直到全部元素均排序完毕。 函数
n个记录的直接选择排序可通过n-1趟直接选择排序获得有序结果。具体算法描述以下:性能
public static void selectionSort(int[] array) { for(int i=0;i<array.length-1;i++){ int flag=i; int tmp; for(int j=i+1;j<array.length;j++){ if(array[j]<array[flag]){ flag=j; } } tmp=array[i]; array[i]=array[flag]; array[flag]=tmp; } }
表现最稳定的排序算法之一,由于不管什么数据进去都是O(n2)的时间复杂度,因此用到它的时候,数据规模越小越好。惟一的好处可能就是不占用额外的内存空间了吧。理论上讲,选择排序可能也是平时排序通常人想到的最多的排序方法了吧。学习
插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工做原理是经过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。ui
通常来讲,插入排序都采用in-place在数组上实现。具体算法描述以下:spa
public static void insertionSort(int[] array) { for (int i = 1; i < array.length; i++) { int cur = array[i]; for (int j = i - 1; j >= 0; j--) { if (cur < array[j]) { array[j + 1] = array[j]; } else { array[j + 1] = cur; break; } } } }
插入排序在实现上,一般采用in-place排序(即只需用到O(1)的额外空间的排序),于是在从后向前扫描过程当中,须要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
1959年Shell发明,第一个突破O(n2)的排序算法,是简单插入排序的改进版。它与插入排序的不一样之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。
先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:
待写
希尔排序的核心在于间隔序列的设定。既能够提早设定好间隔序列,也能够动态的定义间隔序列。动态定义间隔序列的算法是《算法(第4版)》的合著者Robert Sedgewick提出的。
归并排序是创建在归并操做上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个很是典型的应用。将已有序的子序列合并,获得彻底有序的序列;即先使每一个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
public static void mergeSort(int[] array, int start, int end){ if(start<end){ int mid=(start+end)/2; mergeSort(array,start,mid); mergeSort(array,mid+1,end); merge(array,start,mid,end); } } public static void merge(int[] array, int start, int mid, int end){ int p1=start; int p2=mid+1; int k=start; int[] tmp=new int[array.length]; while (p1<=mid&&p2<=end){ if(array[p1]<array[p2]){ tmp[k++]=array[p1++]; }else { tmp[k++]=array[p2++]; } } while (p1<=mid){ tmp[k++]=array[p1++]; } while (p2<=end){ tmp[k++]=array[p2++]; } for(int i=start;i<=end;i++){ array[i]=tmp[i]; } }
归并排序是一种稳定的排序方法。和选择排序同样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,由于始终都是O(nlogn)的时间复杂度。代价是须要额外的内存空间。
快速排序的基本思想:经过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另外一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述以下:
public static void quickSort(int[] array, int low, int high) { int p = low; int q = high; if (low < high) { int tmp = array[low]; while (p < q) { while (p < q && array[q] > tmp) { q--; } if (p < q) { array[p] = array[q]; p++; } while (p < q && array[p] < tmp) { p++; } if (p < q) { array[q] = array[p]; q--; } } array[p] = tmp; quickSort(array, low, p - 1); quickSort(array, p + 1, high); } else { return; } }
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似彻底二叉树的结构,并同时知足堆积的性质:即子结点的键值或索引老是小于(或者大于)它的父节点。
待写
计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 做为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有肯定范围的整数。
待写
计数排序是一个稳定的排序算法。当输入的元素是 n 个 0到 k 之间的整数时,时间复杂度是O(n+k),空间复杂度也是O(n+k),其排序速度快于任何比较排序算法。当k不是很大而且序列比较集中时,计数排序是一个颇有效的排序算法。
桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的肯定。桶排序 (Bucket sort)的工做的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每一个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排)。
待写
桶排序最好状况下使用线性时间O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度,由于其它部分的时间复杂度都为O(n)。很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大。
基数排序是按照低位先排序,而后收集;再按照高位排序,而后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。
待写
基数排序基于分别排序,分别收集,因此是稳定的。但基数排序的性能比桶排序要略差,每一次关键字的桶分配都须要O(n)的时间复杂度,并且分配以后获得新的关键字序列又须要O(n)的时间复杂度。假如待排数据能够分为d个关键字,则基数排序的时间复杂度将是O(d*2n) ,固然d要远远小于n,所以基本上仍是线性级别的。
基数排序的空间复杂度为O(n+k),其中k为桶的数量。通常来讲n>>k,所以额外空间须要大概n个左右。