Java阻塞队列

1. 什么是阻塞队列?

阻塞队列(BlockingQueue)是一个支持两个附加操做的队列。这两个附加的操做是:在队列为空时,获取元素的线程会等待队列变为非空。当队列满时,存储元素的线程会等待队列可用。阻塞队列经常使用于生产者和消费者的场景,生产者是往队列里添加元素的线程,消费者是从队列里拿元素的线程。阻塞队列就是生产者存放元素的容器,而消费者也只从容器里拿元素。html

阻塞队列提供了四种处理方法:java

方法\处理方式 抛出异常 返回特殊值 一直阻塞 超时退出
插入方法 add(e) offer(e) put(e) offer(e,time,unit)
移除方法 remove() poll() take() poll(time,unit)
检查方法 element() peek() 不可用 不可用
  • 抛出异常:是指当阻塞队列满时候,再往队列里插入元素,会抛出IllegalStateException("Queue full")异常。当队列为空时,从队列里获取元素时会抛出NoSuchElementException异常 。
  • 返回特殊值:插入方法会返回是否成功,成功则返回true。移除方法,则是从队列里拿出一个元素,若是没有则返回null
  • 一直阻塞:当阻塞队列满时,若是生产者线程往队列里put元素,队列会一直阻塞生产者线程,直到拿到数据,或者响应中断退出。当队列空时,消费者线程试图从队列里take元素,队列也会阻塞消费者线程,直到队列可用。
  • 超时退出:当阻塞队列满时,队列会阻塞生产者线程一段时间,若是超过必定的时间,生产者线程就会退出。

2. Java里的阻塞队列

JDK7提供了7个阻塞队列。分别是node

  • ArrayBlockingQueue :一个由数组结构组成的有界阻塞队列。
  • LinkedBlockingQueue :一个由链表结构组成的有界阻塞队列。
  • PriorityBlockingQueue :一个支持优先级排序的无界阻塞队列。
  • DelayQueue:一个使用优先级队列实现的无界阻塞队列。
  • SynchronousQueue:一个不存储元素的阻塞队列。
  • LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。
  • LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。

ArrayBlockingQueue是一个用数组实现的有界阻塞队列。此队列按照先进先出(FIFO)的原则对元素进行排序。默认状况下不保证访问者公平的访问队列,所谓公平访问队列是指阻塞的全部生产者线程或消费者线程,当队列可用时,能够按照阻塞的前后顺序访问队列,即先阻塞的生产者线程,能够先往队列里插入元素,先阻塞的消费者线程,能够先从队列里获取元素。一般状况下为了保证公平性会下降吞吐量。咱们可使用如下代码建立一个公平的阻塞队列:linux

ArrayBlockingQueue fairQueue = new  ArrayBlockingQueue(1000,true);

访问者的公平性是使用可重入锁实现的,代码以下:windows

public ArrayBlockingQueue(int capacity, boolean fair) {
        if (capacity <= 0)
            throw new IllegalArgumentException();
        this.items = new Object[capacity];
        lock = new ReentrantLock(fair);
        notEmpty = lock.newCondition();
        notFull =  lock.newCondition();
}

LinkedBlockingQueue是一个用链表实现的有界阻塞队列。此队列的默认和最大长度为Integer.MAX_VALUE。此队列按照先进先出的原则对元素进行排序。数组

PriorityBlockingQueue是一个支持优先级的无界队列。默认状况下元素采起天然顺序排列,也能够经过比较器comparator来指定元素的排序规则。元素按照升序排列。缓存

DelayQueue是一个支持延时获取元素的无界阻塞队列。队列使用PriorityQueue来实现。队列中的元素必须实现Delayed接口,在建立元素时能够指定多久才能从队列中获取当前元素。只有在延迟期满时才能从队列中提取元素。咱们能够将DelayQueue运用在如下应用场景:多线程

  • 缓存系统的设计:能够用DelayQueue保存缓存元素的有效期,使用一个线程循环查询DelayQueue,一旦能从DelayQueue中获取元素时,表示缓存有效期到了。
  • 定时任务调度。使用DelayQueue保存当天将会执行的任务和执行时间,一旦从DelayQueue中获取到任务就开始执行,从好比TimerQueue就是使用DelayQueue实现的。

队列中的Delayed必须实现compareTo来指定元素的顺序。好比让延时时间最长的放在队列的末尾。实现代码以下:函数

public int compareTo(Delayed other) {
           if (other == this) // compare zero ONLY if same object
                return 0;
            if (other instanceof ScheduledFutureTask) {
                ScheduledFutureTask x = (ScheduledFutureTask)other;
                long diff = time - x.time;
                if (diff < 0)
                    return -1;
                else if (diff > 0)
                    return 1;
	   else if (sequenceNumber < x.sequenceNumber)
                    return -1;
                else
                    return 1;
            }
            long d = (getDelay(TimeUnit.NANOSECONDS) -
                      other.getDelay(TimeUnit.NANOSECONDS));
            return (d == 0) ? 0 : ((d < 0) ? -1 : 1);
        }

如何实现Delayed接口ui

咱们能够参考ScheduledThreadPoolExecutor里ScheduledFutureTask类。这个类实现了Delayed接口。首先:在对象建立的时候,使用time记录前对象何时可使用,代码以下:

ScheduledFutureTask(Runnable r, V result, long ns, long period) {
            super(r, result);
            this.time = ns;
            this.period = period;
            this.sequenceNumber = sequencer.getAndIncrement();
}

而后使用getDelay能够查询当前元素还须要延时多久,代码以下:

public long getDelay(TimeUnit unit) {
            return unit.convert(time - now(), TimeUnit.NANOSECONDS);
        }

经过构造函数能够看出延迟时间参数ns的单位是纳秒,本身设计的时候最好使用纳秒,由于getDelay时能够指定任意单位,一旦以纳秒做为单位,而延时的时间又精确不到纳秒就麻烦了。使用时请注意当time小于当前时间时,getDelay会返回负数。

如何实现延时队列

延时队列的实现很简单,当消费者从队列里获取元素时,若是元素没有达到延时时间,就阻塞当前线程。

long delay = first.getDelay(TimeUnit.NANOSECONDS);
                    if (delay <= 0)
                        return q.poll();
                    else if (leader != null)
                        available.await();

SynchronousQueue是一个不存储元素的阻塞队列。每个put操做必须等待一个take操做,不然不能继续添加元素。SynchronousQueue能够当作是一个传球手,负责把生产者线程处理的数据直接传递给消费者线程。队列自己并不存储任何元素,很是适合于传递性场景,好比在一个线程中使用的数据,传递给另一个线程使用,SynchronousQueue的吞吐量高于LinkedBlockingQueue 和 ArrayBlockingQueue。

LinkedTransferQueue是一个由链表结构组成的无界阻塞TransferQueue队列。相对于其余阻塞队列,LinkedTransferQueue多了tryTransfer和transfer方法。

transfer方法。若是当前有消费者正在等待接收元素(消费者使用take()方法或带时间限制的poll()方法时),transfer方法能够把生产者传入的元素马上transfer(传输)给消费者。若是没有消费者在等待接收元素,transfer方法会将元素存放在队列的tail节点,并等到该元素被消费者消费了才返回。transfer方法的关键代码以下:

Node pred = tryAppend(s, haveData);
return awaitMatch(s, pred, e, (how == TIMED), nanos);

第一行代码是试图把存放当前元素的s节点做为tail节点。第二行代码是让CPU自旋等待消费者消费元素。由于自旋会消耗CPU,因此自旋必定的次数后使用Thread.yield()方法来暂停当前正在执行的线程,并执行其余线程。

tryTransfer方法。则是用来试探下生产者传入的元素是否能直接传给消费者。若是没有消费者等待接收元素,则返回false。和transfer方法的区别是tryTransfer方法不管消费者是否接收,方法当即返回。而transfer方法是必须等到消费者消费了才返回。

对于带有时间限制的tryTransfer(E e, long timeout, TimeUnit unit)方法,则是试图把生产者传入的元素直接传给消费者,可是若是没有消费者消费该元素则等待指定的时间再返回,若是超时还没消费元素,则返回false,若是在超时时间内消费了元素,则返回true。

LinkedBlockingDeque是一个由链表结构组成的双向阻塞队列。所谓双向队列指的你能够从队列的两端插入和移出元素。双端队列由于多了一个操做队列的入口,在多线程同时入队时,也就减小了一半的竞争。相比其余的阻塞队列,LinkedBlockingDeque多了addFirst,addLast,offerFirst,offerLast,peekFirst,peekLast等方法,以First单词结尾的方法,表示插入,获取(peek)或移除双端队列的第一个元素。以Last单词结尾的方法,表示插入,获取或移除双端队列的最后一个元素。另外插入方法add等同于addLast,移除方法remove等效于removeFirst。可是take方法却等同于takeFirst,不知道是否是Jdk的bug,使用时仍是用带有First和Last后缀的方法更清楚。

在初始化LinkedBlockingDeque时能够设置容量防止其过渡膨胀。另外双向阻塞队列能够运用在“工做窃取”模式中。

3. 阻塞队列的实现原理

若是队列是空的,消费者会一直等待,当生产者添加元素时候,消费者是如何知道当前队列有元素的呢?若是让你来设计阻塞队列你会如何设计,让生产者和消费者可以高效率的进行通信呢?让咱们先来看看JDK是如何实现的。

使用通知模式实现。所谓通知模式,就是当生产者往满的队列里添加元素时会阻塞住生产者,当消费者消费了一个队列中的元素后,会通知生产者当前队列可用。经过查看JDK源码发现ArrayBlockingQueue使用了Condition来实现,代码以下:

private final Condition notFull;
private final Condition notEmpty;

public ArrayBlockingQueue(int capacity, boolean fair) {
        //省略其余代码
        notEmpty = lock.newCondition();
        notFull =  lock.newCondition();
    }

public void put(E e) throws InterruptedException {
        checkNotNull(e);
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            while (count == items.length)
                notFull.await();
            insert(e);
        } finally {
            lock.unlock();
        }
}

public E take() throws InterruptedException {
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            while (count == 0)
                notEmpty.await();
            return extract();
  } finally {
            lock.unlock();
        }
}

private void insert(E x) {
        items[putIndex] = x;
        putIndex = inc(putIndex);
        ++count;
        notEmpty.signal();
    }

当咱们往队列里插入一个元素时,若是队列不可用,阻塞生产者主要经过LockSupport.park(this);来实现

public final void await() throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                LockSupport.park(this);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null) // clean up if cancelled
                unlinkCancelledWaiters();
            if (interruptMode != 0)

reportInterruptAfterWait(interruptMode);
        }

继续进入源码,发现调用setBlocker先保存下将要阻塞的线程,而后调用unsafe.park阻塞当前线程。

public static void park(Object blocker) {
        Thread t = Thread.currentThread();
        setBlocker(t, blocker);
        unsafe.park(false, 0L);
        setBlocker(t, null);
    }

unsafe.park是个native方法,代码以下:

public native void park(boolean isAbsolute, long time);

park这个方法会阻塞当前线程,只有如下四种状况中的一种发生时,该方法才会返回。

  • 与park对应的unpark执行或已经执行时。注意:已经执行是指unpark先执行,而后再执行的park。
  • 线程被中断时。
  • 若是参数中的time不是零,等待了指定的毫秒数时。
  • 发生异常现象时。这些异常事先没法肯定。

咱们继续看一下JVM是如何实现park方法的,park在不一样的操做系统使用不一样的方式实现,在linux下是使用的是系统方法pthread_cond_wait实现。实现代码在JVM源码路径src/os/linux/vm/os_linux.cpp里的 os::PlatformEvent::park方法,代码以下:

void os::PlatformEvent::park() {      
     	     int v ;
	     for (;;) {
		v = _Event ;
	     if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
	     }
	     guarantee (v >= 0, "invariant") ;
	     if (v == 0) {
	     // Do this the hard way by blocking ...
	     int status = pthread_mutex_lock(_mutex);
	     assert_status(status == 0, status, "mutex_lock");
	     guarantee (_nParked == 0, "invariant") ;
	     ++ _nParked ;
	     while (_Event < 0) {
	     status = pthread_cond_wait(_cond, _mutex);
	     // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
	     // Treat this the same as if the wait was interrupted
	     if (status == ETIME) { status = EINTR; }
	     assert_status(status == 0 || status == EINTR, status, "cond_wait");
	     }
	     -- _nParked ;
	     
	     // In theory we could move the ST of 0 into _Event past the unlock(),
	     // but then we'd need a MEMBAR after the ST.
	     _Event = 0 ;
	     status = pthread_mutex_unlock(_mutex);
	     assert_status(status == 0, status, "mutex_unlock");
	     }
	     guarantee (_Event >= 0, "invariant") ;
	     }

     }

pthread_cond_wait是一个多线程的条件变量函数,cond是condition的缩写,字面意思能够理解为线程在等待一个条件发生,这个条件是一个全局变量。这个方法接收两个参数,一个共享变量_cond,一个互斥量_mutex。而unpark方法在linux下是使用pthread_cond_signal实现的。park 在windows下则是使用WaitForSingleObject实现的。

当队列满时,生产者往阻塞队列里插入一个元素,生产者线程会进入WAITING (parking)状态。咱们可使用jstack dump阻塞的生产者线程看到这点:

"main" prio=5 tid=0x00007fc83c000000 nid=0x10164e000 waiting on condition [0x000000010164d000]
   java.lang.Thread.State: WAITING (parking)
        at sun.misc.Unsafe.park(Native Method)
        - parking to wait for  <0x0000000140559fe8> (a java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject)
        at java.util.concurrent.locks.LockSupport.park(LockSupport.java:186)
        at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:2043)
        at java.util.concurrent.ArrayBlockingQueue.put(ArrayBlockingQueue.java:324)
        at blockingqueue.ArrayBlockingQueueTest.main(ArrayBlockingQueueTest.java:11)

4. 参考资料

相关文章
相关标签/搜索