python必学库总结👉👉👉第一篇 |Python 主题月

本文正在参加「Python主题月」,详情查看 活动连接python

Hello你们好!!!最近又整理了一些好用的库可是只是初级介绍,若是你们用获得的话还请本身到官网上查一下,由于东西太多我一 一介绍的话可能不太现实程序员

23.png

哈哈哈那咱们言归正传,开搞!!!正则表达式

导读

一般,开发大量原始代码是一个费时费力的工做并且有时候有不少专业知识咱们不可能都一 一弄懂,为了不这种状况,咱们会尽量多地使用库中已有的类来建立对象,一般仅须要一行代码。所以,库可以帮助咱们使用适量的代码执行重要的任务。我想这也是为何python可以活跃在咱们身边的缘由之一吧,欢迎你们点赞收藏,往后学习。算法

前戏

刚才忘了说了,你们在用python的时候我仍是推荐你们下一个集成开发环境Anaconda这里面可以更好的管理这些第三方库文件,其好处只有你真正用过才知道老规矩想用的话本身查, 老师说过:“程序员最长走的两条路一是本身去百度;二是找别人帮你百度!!!” 这真的是名言sql

1 Python标准库

1.png

有时候你可能想不到python标准库里面有这么多工功能,Python标准库提供了丰富的功能,包括文本/二进制数据处理、数学运算、函数式编程、文件/目录访问、数据持久化、数据压缩/归档、加密、操做系统服务、并发编程、进程间通讯、网络协议、JSON / XML /其余Internet数据格式、多媒体、国际化、GUI、调试、分析等。下面列出了一部分Python标准库模块。shell

  • difflib:差别计算工具数据库

  • collections:创建在列表、元组、字典和集合基础上的增强版数据结构。编程

  • csv:处理用逗号分隔值的文件。json

  • datetime, time:日期和时间操做。数组

  • decimal:定点或浮点运算,包括货币计算。

  • doctest:经过验证测试或嵌入在docstring中的预期结果进行简单的单元测试。

  • json:处理用于Web服务和NoSQL文档数据库的JSON(JavaScript Object Notation)数据。

  • math:常见的数学常量和运算。

  • os:与操做系统进行交互。

  • queue:一种先进先出的数据结构。

  • random:伪随机数操做。

  • re:用于模式匹配的正则表达式。

  • sqlite3:SQLite关系数据库访问。

  • statistics:数理统计函数,如均值、中值、众数和方差等。

  • sys:—命令行参数处理,如标准输入流、输出流和错误流。

  • timeit:性能分析。

  • string:通用字符串操做

  • textwrap:文本填充

  • unicodedata:Unicode字符数据库

  • stringprep:互联网字符串准备工具

  • readline:GNU按行读取接口

  • rlcompleter:GNU按行读取的实现函数

Python拥有一个庞大且仍在快速增加的开源社区,社区中的开发者来自许多不一样的领域。该社区中有大量的开源库是Python受欢迎的最重要的缘由之一。

许多任务只须要几行Python代码就能够完成,这会使人感到很神奇。下面列出了一些流行的数据科学库。

在这里插入图片描述

2 科学计算与统计

  • NumPy(Numerical Python):Python没有内置的数组数据结构。它提供的列表类型虽然使用起来更方便,可是处理速度较慢。NumPy提供了高性能的ndarray数据结构来表示列表和矩阵,同时还提供了处理这些数据结构的操做。
  • SciPy(Scientific Python):SciPy基于NumPy开发,增长了用于科学处理的程序,例如积分、微分方程、额外的矩阵处理等。scipy.org负责管理SciPy和NumPy。

StatsModels:为统计模型评估、统计测试和统计数据研究提供支持。

  • IPython是Python科学计算标准工具集的组成部分,它能够把不少东西联系到一块儿,有点相似一个加强版的Python shell。目的是为了提升编程,测试和调试Python代码的速度,好像不少国外的大学教授,还有Google大牛都很喜欢用IPython,确实很方便。

3 数据处理与分析

在这里插入图片描述

  • pandas:一个很是流行的数据处理库。pandas充分利用了NumPy的ndarray类型,它的两个关键数据结构是Series(一维)和DataFrame(二维)。
  • modin[14] pandas加速库,接口语法与pandas高度一致
  • dask[15] pandas加速库,接口语法与pandas高度一致
  • plydata[16] pandas管道语法库

4 可视化

  • Pyecharts Echarts 是个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,获得了众多开发者的承认。而 Python 是门富有表达力的语言,很适合用于数据处理。当数据分析赶上数据可视化时pyecharts 诞生了
  • Matplotlib:可高度定制的可视化和绘图库。Matplotlib能够绘制正规图、散点图、柱状图、等高线图、饼图、矢量场图、网格图、极坐标图、3D图以及添加文字说明等。

Seaborn:基于Matplotlib构建的更高级别的可视化库。与Matplotlib相比,Seaborn改进了外观,增长了可视化的方法,而且可使用更少的代码建立可视化。 在这里插入图片描述

5 机器学习、深度学习和强化学习

在这里插入图片描述

  • scikit-learn:一个顶级的机器学习库。机器学习是AI的一个子集,深度学习则是机器学习的一个子集,专一于神经网络。

  • Keras:最易于使用的深度学习库之一。Keras运行在TensorFlow(谷歌)、CNTK(微软的深度学习认知工具包)或Theano(蒙特利尔大学)之上。

  • TensorFlow:由谷歌开发,是使用最普遍的深度学习库。TensorFlow与GPU(图形处理单元)或谷歌的定制TPU(Tensor处理单元)配合使用能够得到最佳的性能。TensorFlow在人工智能和大数据分析中有很是重要的地位,由于人工智能和大数据对数据处理的需求很是巨大。

  • OpenAI Gym:用于开发、测试和比较强化学习算法的库和开发环境。

  • pytorch  Pytorch是torch的python版本,是由Facebook开源的神经网络框架,专门针对 GPU 加速的深度神经网络(DNN)编程。Torch 是一个经典的对多维矩阵数据进行操做的张量(tensor )库,在机器学习和其余数学密集型应用有普遍应用。与Tensorflow的静态计算图不一样,pytorch的计算图是动态的,能够根据计算须要实时改变计算图。但因为Torch语言采用 Lua,致使在国内一直很小众,并逐渐被支持 Python 的 Tensorflow 抢走用户。做为经典机器学习库 Torch 的端口,PyTorch 为 Python 语言使用者提供了温馨的写代码选择。

6天然语言处理

在这里插入图片描述

  • NLTK(Natural Language Toolkit):用于完成天然语言处理(NLP)任务。
  • TextBlob:一个面向对象的NLP文本处理库,基于NLTK和模式NLP库构建,简化了许多NLP任务。
  • Gensim:功能与NLTK相似。一般用于为文档合集构建索引,而后肯定另外一个文档与索引中每一个文档的类似程度。
相关文章
相关标签/搜索