本章咱们从
fabric v1.0
的e2e_cli
示例开始分析整个启动过程以及在过程当中的一些配置文件html
首先呢,仍是确保你的基本环境已经搭建完成,v1.0源码和镜像也都下载完毕git
在源码目录下的network_setup.sh
文件是官方提供的快速部署测试的一个自动化脚本,接下来咱们看一下在启动这个文件时都作了什么:
在上图中咱们只是截取了启动函数,在这个函数中能够清楚的看出在启动中调用了generateArtifacts.sh
和docker-compose-cli.yaml
两个文件,这两个文件的做用分别是:github
generateArtifacts.sh:生成所需的证书(crypto-config文件夹)和通道相关的配置文件(channel-artifacts文件夹) docker-compose-cli.yaml:描述的是这个示例网络的拓扑结构
咱们继续分析在network_setup.sh
中调用generateArtifacts.sh
文件具体又作了什么呢
在generateArtifacts.sh
中一共有3个函数:replacePrivateKey()
、generateCerts()
和generateChannelArtifacts()
generateCerts():
在上图中能够看到这个函数使用工具cryptogen和crypto-config.yaml
文件来生成所需的证书文件和公私钥。
咱们能够看一下crypto-config.yaml
文件:
Name和Domain是指该org的名字和域名,Template.Count是指该org中的节点数量,Users.Count是指该org中包含的user数量.docker
OrdererOrgs: - Name: Orderer Domain: example.com Specs: - Hostname: orderer # --------------------------------------------------------------------------- PeerOrgs: - Name: Org1 Domain: org1.example.com Template: Count: 2 Users: Count: 1 # --------------------------------------------------------------------------- - Name: Org2 Domain: org2.example.com Template: Count: 2 Users: Count: 1
generateChannelArtifacts():
在上图中能够看到这个函数使用工具configtxgen和configtx.yaml文件来生成创世区块以及通道相关的配置文件。而configtx.yaml文件里主要是一些org的配置项信息,如ID、Host、Port等,除此以外还指明了orderer的共识方式为solo等一些的基础的配置项信息。bash
docker-compose-cli.yaml
文件描述了这个示例网络的拓扑结构,以下,包含:网络
#command: /bin/bash -c './scripts/script.sh ${CHANNEL_NAME}; sleep $TIMEOUT'
文件中上面这一行是笔者故意注释掉的,使docker-compose-cli.yaml
文件启动时不会自动去执行script.sh
脚本,而这个脚本就是自动建立、加入通道以及链码相关操做的自动化脚本,而在下面,咱们将本身动手来一步步完成这些步骤,从而加深对fabric启动过程的理解。函数
version: '2' services: orderer.example.com: extends: file: base/docker-compose-base.yaml service: orderer.example.com container_name: orderer.example.com peer0.org1.example.com: container_name: peer0.org1.example.com extends: file: base/docker-compose-base.yaml service: peer0.org1.example.com peer1.org1.example.com: container_name: peer1.org1.example.com extends: file: base/docker-compose-base.yaml service: peer1.org1.example.com peer0.org2.example.com: container_name: peer0.org2.example.com extends: file: base/docker-compose-base.yaml service: peer0.org2.example.com peer1.org2.example.com: container_name: peer1.org2.example.com extends: file: base/docker-compose-base.yaml service: peer1.org2.example.com cli: container_name: cli image: hyperledger/fabric-tools tty: true environment: - GOPATH=/opt/gopath - CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock - CORE_LOGGING_LEVEL=DEBUG - CORE_PEER_ID=cli - CORE_PEER_ADDRESS=peer0.org1.example.com:7051 - CORE_PEER_LOCALMSPID=Org1MSP - CORE_PEER_TLS_ENABLED=true - CORE_PEER_TLS_CERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/server.crt - CORE_PEER_TLS_KEY_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/server.key - CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt - CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer #command: /bin/bash -c './scripts/script.sh ${CHANNEL_NAME}; sleep $TIMEOUT' volumes: - /var/run/:/host/var/run/ - ../chaincode/go/:/opt/gopath/src/github.com/hyperledger/fabric/examples/chaincode/go - ./crypto-config:/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ - ./scripts:/opt/gopath/src/github.com/hyperledger/fabric/peer/scripts/ - ./channel-artifacts:/opt/gopath/src/github.com/hyperledger/fabric/peer/channel-artifacts depends_on: - orderer.example.com - peer0.org1.example.com - peer1.org1.example.com - peer0.org2.example.com - peer1.org2.example.com
接下来咱们将实际动手启动一下官方提供的示例:工具
首先咱们进入下载的fabric源码目录/root/go/src/github.com/hyperledger/fabric
,执行make cryptogen
命令,生成cryptogen
可执行程序,若有报错,则在文章最后一部分有笔者本身遇到的错误,可自行查看;
接下来进入cd examples/e2e_cli/
目录执行../../build/bin/cryptogen generate --config=./crypto-config.yaml
,则会在本目录下生成crypto-config
文件夹,存放生成公私钥和证书。
测试
返回到fabric
目录,执行make configtxgen
命令,生成configtxgen
可执行程序
接下来仍是进入cd examples/e2e_cli/
目录
生成创世区块:ui
../../build/bin/configtxgen -profile TwoOrgsOrdererGenesis -outputBlock ./channel-artifacts/genesis.block
生成通道相关的配置文件:
../../build/bin/configtxgen -profile TwoOrgsChannel -outputCreateChannelTx ./channel-artifacts/channel.tx -channelID mychannel
生成org1和org2锚节点所需的配置文件:
../../build/bin/configtxgen -profile TwoOrgsChannel -outputAnchorPeersUpdate ./channel-artifacts/Org1MSPanchors.tx -channelID mychannel -asOrg Org1MSP ../../build/bin/configtxgen -profile TwoOrgsChannel -outputAnchorPeersUpdate ./channel-artifacts/Org2MSPanchors.tx -channelID mychannel -asOrg Org2MSP
执行完上述命令后,再执行tree channel-artifacts/
(需安装tree命令yum install tree
),能够看见以下图生成的文件的目录结构:
启动所需的一切都准备完毕,接下来咱们启动fabric网络
docker-compose -f docker-compose-cli.yaml up
另起一个终端,执行docker ps
,能够看到以下图,启动了1个orderer,4个peer(分属2个org),1个cli
进入cli容器:docker exec -it cli bash
为了方便接下来咱们的操做,先设置一些环境变量:
export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem export CHANNEL_NAME=mychannel
建立通道:
peer channel create -o orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-artifacts/channel.tx --tls true --cafile $ORDERER_CA
执行完该命令后系统会打印出下图,而且会在cli中生成1个mychannel.block
文件,在后续中,其余的节点想要加入咱们建立的这个通道,就必须使用这个文件。
docker-compose-cli.yaml
文件中其实指明了启动时就默认链接的是org1.peer0
节点,因此直接将其加入通道便可peer channel join -b $CHANNEL_NAME.block
执行结果以下:
org1.peer0
节点加入了mychannel
这个通道,一样咱们再将org1.peer1
节点也加入通道,不过这里就须要修改环境变量,使其指向咱们须要加入通道的节点后,再将节点加入通道。export CORE_PEER_LOCALMSPID="Org1MSP" export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin\@org1.example.com/msp export CORE_PEER_ADDRESS=peer1.org1.example.com:7051 peer channel join -b $CHANNEL_NAME.block
执行结果以下:
org2.peer0
节点加入通道:export CORE_PEER_LOCALMSPID="Org2MSP" export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/users/Admin\@org2.example.com/msp export CORE_PEER_ADDRESS=peer0.org2.example.com:7051 peer channel join -b $CHANNEL_NAME.block
执行结果以下:
org2.peer1
节点加入通道:export CORE_PEER_LOCALMSPID="Org2MSP" export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/users/Admin\@org2.example.com/msp export CORE_PEER_ADDRESS=peer1.org2.example.com:7051 peer channel join -b $CHANNEL_NAME.block
执行结果以下:
锚节点的做用是为了方便组织(org)之间的通讯,1个组织(org)能够拥有1个或多个锚节点负责与其余组织进行通讯,而后将结果同步到其余节点。
更新org1
的锚节点org1.peer0
,首先链接到org1.peer0
再执行更新
export CORE_PEER_LOCALMSPID="Org1MSP" export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin\@org1.example.com/msp export CORE_PEER_ADDRESS=peer0.org1.example.com:7051 peer channel update -o orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-artifacts/Org1MSPanchors.tx --tls true --cafile $ORDERER_CA
更新org2
的锚节点org2.peer0
,首先链接到org2.peer0
再执行更新
export CORE_PEER_LOCALMSPID="Org2MSP" export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/users/Admin\@org2.example.com/msp export CORE_PEER_ADDRESS=peer0.org2.example.com:7051 peer channel update -o orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-artifacts/Org2MSPanchors.tx --tls true --cafile $ORDERER_CA
在上上一步中咱们已经将org1和org2的一共4个peer都加入名为mychannel
的这个通道,接下来咱们开始安装链码,此时咱们在上一步命令执行结束后仍链接的是org2.pee1
节点,由于链码安装时并无产生交易,所以是不会影响通道内的其余节点,能够说链码安装实际上是一个本地化操做,因此,若是咱们想在不一样的节点中调用链码的话,就须要安装4次链码(由于咱们目前只有4个节点)
peer chaincode install -n mycc -v 1.0 -p github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02
执行结果以下:
peer chaincode instantiate -o orderer.example.com:7050 --tls true --cafile $ORDERER_CA -C $CHANNEL_NAME -n mycc -v 1.0 -c '{"Args":["init", "a", "100", "b", "200"]}' -P "OR ('Org1MSP.member', 'Org2MSP.member')"
peer chaincode query -C $CHANNEL_NAME -n mycc -c '{"Args":["query", "a"]}'
执行结果以下:
接下来咱们调用链码使a给b转帐50元
peer chaincode invoke -o orderer.example.com:7050 --tls true --cafile $ORDERER_CA -C $CHANNEL_NAME -n mycc -c '{"Args":["invoke", "a","b","50"]}'
执行结果以下:
如今咱们须要在另外1个节点org1.peer0
上查询org2.peer1
节点上发生的交易是否成功
须要先链接到org1.peer0
上,须要再一次安装链码,但不须要实例化
export CORE_PEER_LOCALMSPID="Org1MSP" export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin\@org1.example.com/msp export CORE_PEER_ADDRESS=peer0.org1.example.com:7051 peer chaincode install -n mycc -v 1.0 -p github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02
再一次安装完链码后咱们调用链码查询a的余额
peer chaincode query -C $CHANNEL_NAME -n mycc -c '{"Args":["query", "a"]}'
执行结果以下:
最后咱们查看正在运行中的容器,能够看到以下:
make cryptogen
命令若有报错yum install libtool-ltdl-devel
最后呢,说明一下,做者也是刚入坑的小白,这篇文章也就是分享一下我的的理解,方便之后查看。若是对你有帮助的话,很是荣幸,若是有不对的地方,欢迎留言指正!