25岁Java工程师如何转型学习人工智能?

 收到很多童鞋的来信,其中以职业发展、技术成长的困惑居多。git

  今天选择了一个颇具备表明性的问题:关于目前大热的AI入门学习,但愿能帮助有一样问题的童鞋解惑指路。github

  来信问题:25岁Java工程师如何转型学习AI?算法

  我是一名25岁的Java开发工程师。本科学习的专业是信息与计算科学(数学专业),由于对计算机方面感兴趣,以后培训学习了Java,因此如今从事Java开发。目前就是在电商公司开发一些系统。网络

  我对人工智能很是感兴趣,对数学的兴趣也从未减弱。人工智能设计的学习材料不少,像我这样的情况,若是想要转型之后从事这方面的工做,具体应该学习些什么?机器学习

  阿里技术童鞋“以均”回信:oop

  首先,我想聊聊为什么深度学习最近这么火。学习

  外行所见的是2016年AlphaGo 4比1 打败李世石,掀起了一波AI热潮,DeepMind背后所用的深度学习一时间火得不得了。其实在内行看来,AlphaGo对阵李世石的结果是毫无悬念的,真正的突破在几年前就发生了。2012年,Gefferey Hinton的学生Alex使用一个特别构造的深度神经网络(后来就叫AlexNet),在图像识别的专业比赛ImageNet中,获得了远超以前最好成绩的结果,那个时候,整我的工智能领域就已经明白,深度学习的革命已经到来了。大数据

果真,以后深度学习在包括语音识别,图像理解,机器翻译等传统的人工智能领域都超越了原先各自领域效果最好的方法。从2015年起,工业界内一些嗅觉灵敏的人士也意识到,一场 关于基本概念的学习人工智能

  关于基本概念的学习ssr

  机器学习与深度学习

  深度学习是机器学习中的一种技术,机器学习包含深度学习。机器学习还包含其余非深度学习的技术,好比支持向量机,决策树,随机森林,以及关于“学习”的一些基本理论,好比,一样都能描述已知数据的两个不一样模型,参数更少的那个对未知数据的预测能力更好(奥卡姆剃刀原理)。

  深度学习是一类特定的机器学习技术,主要是深度神经网络学习,在以前经典的多层神经网络的基础上,将网络的层数加深,并辅以更复杂的结构,在有极大量的数据用于训练的状况下,在不少领域获得了比其余方法更好的结果。

  机器学习与大数据

  大数据:机器学习的基础,但在多数语境下,更侧重于统计学习方法。

  机器学习,深度学习,数据挖掘,大数据的关系能够用下图表示

  系统学习资料

  深度学习火起来以后,网上关于深度学习的资料不少。可是其质量良莠不齐。我从2013年开始就关注深度学习,见证了它从一个小圈子的领先技术到一个大众所追捧的热门技术的过程,也看了不少资料。我认为一个高质量的学习资料能够帮助你真正的理解深度学习的本质,而且更好地掌握这项技术,用于实践。

  如下是我所推荐的学习资料:

  首先是视频课程。

  Yaser Abu-Mostafa

  加州理工的Yaser Abu-Mostafa教授出品的机器学习网络课程,很是系统地讲解了机器学习背后的原理,以及主要的技术。讲解很是深刻浅出,让你不光理解机器学习有哪些技术,还能理解它们背后的思想,为何要提出这项技术,机器学习的一些通用性问题的解决方法(好比用正则化方法解决过拟合)。强烈推荐。

  课程名称:Machine Learning Course - CS 156

  视频地址:https://www.youtube.com/watch

  Geoffrey Hinton

  深度学习最重要的研究者。也是他和另外几我的(Yann LeCun,Yoshua Bengio等)在神经网络被人工智能业界打入冷宫,进入低谷期的时候仍然不放弃研究,最终取得突破,才有了如今的深度学习热潮。

  他在Coursera上有一门深度学习的课程,其权威性自不待言,可是课程制做的质量以及易于理解的程度,实际上比不上前面Yaser Mostafa的。固然,由于其实力,课程的干货仍是很是多的。

  课程名称:Neural Networks for Machine Learning

  课程地址:https://www.coursera.org/learn/neural-networks

  UdaCity

  Google工程师出品的一个偏重实践的深度学习课程。讲解很是简明扼要,而且注重和实践相结合。推荐。

  课程名称:深度学习

  课程地址:https://cn.udacity.com/course/deep-learning--ud730

  小象学院

  国内小象学院出品的一个深度学习课程,理论与实践并重。由纽约城市大学的博士李伟主讲,优势是包含了不少业内最新的主流技术的讲解。值得一看。

  课程名称:深度学习(第四期)

  课程地址: http://www.chinahadoop.cn/classroom/45/courses

  推荐阅读书目

  《Deep Learning the Book》 —— 这本书是前面提到的大牛Yoshua Begio的博士生Goodfellow写的。Goodfellow是生成式对抗网络的提出者,生成式对抗网络被Yann LeCun认为是近年最激动人心的深度学习技术想法。这本书比较系统,专业,偏重理论,兼顾实践,是系统学习深度学习不可多得的好教材。

  英文版:http://deeplearningthebook.com

  目前Github上已经有人翻译出了中文版:

  https://github.com/exacity/deeplearningbook-chinese

  推荐学习路径

  不一样的人有不一样的需求,有些人但愿掌握好理论基础,而后进行实践,有些人但愿可以快速上手,立刻作点东西,有些人但愿理论与实践兼顾。下面推荐几条学习路径,照顾到不一样的需求。你们能够根据本身的特色进行选择。

  Hard way

  Yaser -> Geoffrey Hinton -> UdaCity -> Good Fellow 特色:理论扎实,步步为营。最完整的学习路径,也是最“难”的。 推荐指数: 4星

  Good way

  Yaser -> UdaCity -> 小象学院 -> Good Fellow 特色:理论扎实,紧跟潮流,兼顾实战,最后系统梳理。比较平衡的学习路径。 推荐指数: 5星

  "Fast" way

  UdaCity -> Good Fellow 特色:快速上手,而后完善理论。 推荐指数: 4星

  "码农" way

  UdaCity 特色:快速上手,注重实践。 推荐指数: 3星

  阿里巴巴算法工程师应届生招聘岗位,欢迎你们投递简历:

  算法工程师-机器学习 Software engineer -Machine Learning

  https://campus.alibaba.com/position.htm?refno=11792

  算法工程师-语音对话交互 Software engineer -Speech & Interaction

  https://campus.alibaba.com/position.htm?refno=11790

  算法工程师-天然语言处理 Software engineer -Natural Language Processing

  https://campus.alibaba.com/position.htm?refno=11791

  算法工程师-图像图形 Software engineer - Computer Vision & Graphics

  https://campus.alibaba.com/position.htm?refno=11793

  基础平台研发工程师 Software Engineer – Platform

  https://campus.alibaba.com/position.htm?refno=11813

  文章连接:http://click.aliyun.com/m/26232/

相关文章
相关标签/搜索