第二步:虚拟机环境搭建html
第三步:用户信息java
第四步 安装、配置Java环境node
第五步 Zookeeper安装配置mysql
第八步:Sqoop安装部署(sqoop1)shell
第九步:Hive安装部署数据库
我是要在另外一台新服务器上搭建ESXi,部署了5个虚拟机,用 vSphere Client 管理。(注:若是选择CD/DVD驱动器的时候,一直显示正在链接,则须要重启客户端)
apache
这里我选用的是Cloudera公司的CDH版本,问题少一些,而且能够配套下载,避免遇到各类兼容问题。下载地址bootstrap
系统配置
相关软件全放到/opt目录下,并且环境变量全在各自的安装目录配置文件中设定(也能够在~/.bashrc 中统一设置)
环境变量
配置文件
192.168.0.155 NameNode1
192.168.0.156 NameNode2
192.168.0.157 DataNode1
192.168.0.158 DataNode2
192.168.0.159 DataNode3
127.0.0.1 localhost #这个必需要有
节点配置图
为了之后的模块化管理,打算hadoop,hbase,hive等等都单独建用户
由于这5台机器建立用户,配置权限等的操做是同样的,咱们要不就是在五个机器上都敲一遍命令,要不就是在一台机器上配完了再把文件复制过去,都比较繁琐。
由于我用的是Xshell,使用 【Alt + t , k】或者【工具】->【发送键输入到全部会话】,这样只要在一个会话中输入命令,全部打开的会话都会执行,就像是同时在这5台机器上敲命令同样。
su #使用root用户 useradd -m hadoop -s /bin/bash #用一样方式建立hbase,hive,zookeeper,sqoop用户 passwd hadoop #给用户设置密码 visudo #给用户设定权限 :98 在98行新加hadoop的权限便可
接下来就是安装SSH、配置SSH无密码登录
首先更新一下系统软件
yum upgrade
设置本机公钥、私钥
cd ~/.ssh/ # 若没有该目录,请先执行一次 mkdir ~/.ssh
ssh-keygen -t rsa #一路回车
cat id_rsa.pub >> authorized_keys # 将公钥加入服务器
chmod 600 ./authorized_keys # 修改文件权限
-----------------------------------若是是非root用户,下面这一步必需要作----------------------------------------------------
chmod 700 ~/.ssh #修改文件夹权限 mkdir生成的文件夹默认是775,必须改为700;用ssh localhost生成的文件夹也能够
上面介绍的SSH免密登陆本机的,而咱们的登陆关系是这样的
因此 还要分别赋予公钥
使用yum安装java(每一台虚拟机)
sudo yum install java-1.7.0-openjdk java-1.7.0-openjdk-devel
默认安装路径: /usr/lib/jvm/java-1.7.0-openjdk
而后在 /etc/environment 中保存JAVA_HOME变量
sudo vi /etc/environment
内容以下
mv conf/zoo_example.cfg conf/zoo.cfg
tickTime=2000
initLimit=10
syncLimit=5
dataDir=/home/hadoop/data/zookeeper
dataLogDir=/home/hadoop/logs/zookeeper
clientPort=2181
server.0=NameNode1:2888:3888
server.1=NameNode2:2888:3888
server.2=DataNode1:2888:3888
server.3=DataNode2:2888:3888
server.4=DataNode3:2888:3888
echo 1 > /home/hadoop/data/zookeeper/myid #由于zoo.cfg文件中 NameNode2前面的数字是1 因此写入1便可 #若是DataNode3的话就须要写4
注:必定要建立这两个目录 不然报错【ERROR [main:QuorumPeerMain@86] - Invalid config, exiting abnormally】
# sudo yum install ntpdate #若是没有安装ntpdate的话,须要先安装
sudo ntpdate time.nist.gov
bin/zkServer.sh start
bin/zkServer.sh status
在/opt下面建立一个文件夹 software并更改用户组
cd /opt sudo mkdir software sudo chown -R hadoop:hadoop software
而后全部大数据相关程序都放到这个文件夹中
export SOFTWARE_HOME=/opt/software
export HADOOP_HOME=/opt/hadoop/hadoop-2.5.0-cdh5.3.6 export HADOOP_PID_DIR=$SOFTWARE_HOME/data/hadoop/pid export HADOOP_LOG_DIR=$SOFTWARE_HOME/logs/hadoop
export YARN_LOG_DIR=$SOFTWARE_HOME/logs/yarn export YARN_PID_DIR=$SOFTWARE_HOME/data/yarn
export HADOOP_MAPRED_LOG_DIR=$SOFTWARE_HOME/logs/mapred export HADOOP_MAPRED_PID_DIR=$SOFTWARE_HOME/data/mapred
<configuration> <property> <name>fs.defaultFS</name> <value>hdfs://sardoop</value> </property> <property> <name>hadoop.http.staticuser.user</name> <value>hadoop</value> </property> <property> <name>hadoop.proxyuser.hadoop.hosts</name> <value>*</value> </property> <property> <name>hadoop.proxyuser.hadoop.users</name> <value>hadoop</value> </property> <property> <name>fs.trash.interval</name> <value>4230</value> </property> <property> <name>io.file.buffer.size</name> <value>65536</value> </property> <property> <name>hadoop.tmp.dir</name> <value>/opt/software/hadoop-2.5.0-cdh5.3.6/tmp</value> </property> <property> <name>ha.zookeeper.quorum</name> <value>NameNode1,NameNode2,DataNode1,DataNode2,DataNode3</value> </property> </configuration>
<configuration> <property> <name>dfs.replication</name> <value>2</value> </property> <property> <name>dfs.nameservices</name> <value>sardoop</value> </property> <property> <name>dfs.ha.namenodes.sardoop</name> <value>nn1,nn2</value> </property> <property> <name>dfs.namenode.rpc-address.sardoop.nn1</name> <value>NameNode1:9820</value> </property> <property> <name>dfs.namenode.rpc-address.sardoop.nn2</name> <value>NameNode2:9820</value> </property> <property> <name>dfs.namenode.http-address.sardoop.nn1</name> <value>NameNode1:9870</value> </property> <property> <name>dfs.namenode.http-address.sardoop.nn2</name> <value>NameNode2:9870</value> </property> <property> <name>dfs.namenode.shared.edits.dir</name> <value> qjournal://DataNode1:8485;DataNode2:8485;DataNode3:8485/sardoop</value> </property> <property> <name>dfs.client.failover.proxy.provider.sardoop</name> <value> org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value> </property> <property> <name>dfs.ha.fencing.methods</name> <value>sshfence</value> </property> <property> <name>dfs.ha.fencing.ssh.private-key-files</name> <value>/home/hadoop/.ssh/id_rsa</value> </property> <property> <name>dfs.journalnode.edits.dir</name> <value>/opt/software/hadoop-2.5.0-cdh5.3.6/tmp/journal</value> </property> <property> <name>dfs.ha.automatic-failover.enabled</name> <value>true</value> </property> <property> <name>dfs.datanode.max.transfer.threads</name> <value>4096</value> </property>
<!--这里必需要加上前缀 file:// 不然会出现警告 should be specified as a URI in configuration files.并没有法启动DataNode--> <property> <name>dfs.namenode.name.dir</name> <value>file:///opt/hdfsdata/namenode,file:///home/hadoop/data/hdfs/namenode</value> </property> <property> <name>dfs.datanode.data.dir</name> <value>file:///opt/hdfsdata/datanode,file:///home/hadoop/data/hdfs/datanode</value> </property> </configuration>
DataNode1
DataNode2
DataNode3
<configuration> <property> <name>yarn.resourcemanager.ha.enabled</name> <value>true</value> </property> <property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2</value> </property> <property> <name>yarn.resourcemanager.hostname.rm1</name> <value>NameNode1</value> </property> <property> <name>yarn.resourcemanager.hostname.rm2</name> <value>NameNode2</value> </property> <property> <name>yarn.resourcemanager.recovery.enabled</name> <value>true</value> </property> <property> <name>yarn.resourcemanager.cluster-id</name> <value>yarnha</value> </property> <property> <name>yarn.resourcemanager.store.class</name> <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value> </property> <property> <name>yarn.resourcemanager.zk-address</name> <value>NameNode1,NameNode2,DataNode1,DataNode2,DataNode3</value> </property> <property> <name>yarn.web-proxy.address</name> <value>NameNode2:9180</value> </property> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.nodemanager.vmem-check-enabled</name> <value>false</value> </property> <property> <name>yarn.nodemanager.vmem-pmem-ratio</name> <value>4</value> </property> </configuration>
<configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> <property> <name>mapreduce.jobhistory.address</name> <value>NameNode1:10020</value> </property> <property> <name>mapreduce.jobhistory.webapp.address</name> <value>NameNode1:19888</value> </property> </configuration>
bin/hdfs dfsadmin -safemode leave
检查HDFS
bin/hdfs fsck / -files -blocks
NameNode2
#主要修改这三项
export HBASE_PID_DIR=${HOME}/data/hbase
export HBASE_MANAGES_ZK=false
export HBASE_LOG_DIR=${HOME}/logs/hbase
<configuration> <property> <name>hbase.cluster.distributed</name> <value>true</value> </property> <property> <name>hbase.rootdir</name> <!--这里应该是要使用nameservice的,可是用了以后IP解析不正确,只能暂时换成HostName;还要注意一点 这里的必须使用当前处于Active的NameNode--> <!--HBase若是要作HA,这里之后必需要改为Nameservice,不然NameNode发生变化的时候还要手动修改Hbase配置--> <value>hdfs://NameNode1:9820/hbase</value> <!--<value>hdfs://sardoop/hbase</value>--> </property> <property> <name>hbase.zookeeper.quorum</name> <value>NameNode1,NameNode2,DataNode1,DataNode2,DataNode3</value> </property> <property> <name>hbase.zookeeper.property.dataDir</name> <value>/home/hadoop/data/zookeeper</value> </property> </configuration>
NameNode2
DataNode1
DataNode2
DataNode3
注意:有时候启动HBase的时候会出现【org.apache.Hadoop.hbase.TableExistsException: hbase:namespace】
或者什么【Znode already exists】相关的问题,通常都是由于以前的HBase信息已经在Zookeeper目录下已经存在引发的。
解决方法:
有时候用java调用hbase时,会发生访问hbase时虽然没有报错,可是一直没有响应。
解决方式:
在程序调用的机器中的hosts文件,添加hbase所在节点的hosts信息
经过sqoop咱们能够实现RDMS与hadoop生态产品 如hdfs、hive、hbase(单向)的数据导入导出。
在导入的过程当中 咱们能够指定mapper的数量,甚至是压缩的方式。目前有sqoop1和sqoop2两个大版本,且差别较大。Sqoop1与Sqoop2的相关功能支持程度
#Set path to where bin/hadoop is available
export HADOOP_COMMON_HOME=/opt/software/hadoop-2.5.0-cdh5.3.6
#Set path to where hadoop-*-core.jar is available
export HADOOP_MAPRED_HOME=/opt/software/hadoop-2.5.0-cdh5.3.6
#set the path to where bin/hbase is available
export HBASE_HOME=/opt/software/hbase-0.98.6-cdh5.3.6
#Set the path to where bin/hive is available
export HIVE_HOME=/opt/software/hive-0.13.1-cdh5.3.6
#Set the path for where zookeper config dir is (若是有独立的ZooKeeper集群,才须要配置这个)
export ZOOCFGDIR=/opt/software/zookeeper-3.4.5-cdh5.3.6/
cp mysql-connector-java-5.1.40-bin.jar /opt/software/sqoop-1.4.5-cdh5.3.6/lib/
--复制到全部虚拟机的Hadoop目录
cp mysql-connector-java-5.1.40-bin.jar /opt/software/hadoop-2.5.0-cdh5.3.6/share/hadoop/common/lib/
scp mysql-connector-java-5.1.40-bin.jar hadoop@NameNode2:/opt/software/hadoop-2.5.0-cdh5.3.6/share/hadoop/common/lib/
scp mysql-connector-java-5.1.40-bin.jar hadoop@DataNode1:/opt/software/hadoop-2.5.0-cdh5.3.6/share/hadoop/common/lib/
scp mysql-connector-java-5.1.40-bin.jar hadoop@DataNode2:/opt/software/hadoop-2.5.0-cdh5.3.6/share/hadoop/common/lib/
scp mysql-connector-java-5.1.40-bin.jar hadoop@DataNode3:/opt/software/hadoop-2.5.0-cdh5.3.6/share/hadoop/common/lib/
cp sqljdbc4.jar /opt/software/sqoop-1.4.5-cdh5.3.6/lib/
cp sqljdbc4.jar /opt/software/hadoop-2.5.0-cdh5.3.6/share/hadoop/common/lib/
scp sqljdbc4.jar hadoop@NameNode2:/opt/software/hadoop-2.5.0-cdh5.3.6/share/hadoop/common/lib/
scp sqljdbc4.jar hadoop@DataNode1:/opt/software/hadoop-2.5.0-cdh5.3.6/share/hadoop/common/lib/
scp sqljdbc4.jar hadoop@DataNode2:/opt/software/hadoop-2.5.0-cdh5.3.6/share/hadoop/common/lib/
scp sqljdbc4.jar hadoop@DataNode3:/opt/software/hadoop-2.5.0-cdh5.3.6/share/hadoop/common/lib/
bin/sqoop help
** 查看sqlserver数据库列表 bin/sqoop list-databases --connect 'jdbc:sqlserver://192.168.0.154:1433;username=sa;password=123'
** 查看数据库表
bin/sqoop list-tables --connect 'jdbc:mysql://192.168.0.154:3306/Test' --username sa --password 123
** 直接导表数据到HBase
bin/sqoop import --connect 'jdbc:sqlserver://192.168.0.154:1433;username=sa;password=123;database=Test' --table Cities --split-by Id
--hbase-table sqoop_Cities --column-family c --hbase-create-table --hbase-row-key Id
**用sql语句导入(若是使用了query的形式,则必需要在sql后面加上 $CONDITIONS)
bin/sqoop import --connect 'jdbc:sqlserver://192.168.0.154:1433;username=sa;password=123;database=Test'\
--query 'SELECT a.*, b.* FROM a JOIN b on (a.id == b.id) WHERE id>10 AND $CONDITIONS' -m 1\
--split-by Id --hbase-table sqoop_Cities --column-family c --hbase-create-table --hbase-row-key Id
** 导入HDFS(由于这是经过Mapper处理的,全部这个目标路径必须不存在)
./sqoop import --connect 'jdbc:sqlserver://192.168.0.154:1433;username=sa;password=123;database=Test' --table Cities --target-dir /input/Cities
** 从hdfs处处到mysql
bin/sqoop export --connect jdbc:mysql://NameNode1:3306/test --username root --password 123
--table loghour --m 2 --export-dir /tmp/loghour/ --input-fields-terminated-by '\t'
注:
create database hive;
grant all on hive*.* to hive@'%' identified by 'hive';
flush privileges;
#为了操做方便,能够选择建立软连接(非必须)
ln -s hive-0.13.1-cdh5.3.6 hive
hive-default.xml.template --> hive-site.xml
hive-log4j.properties.template --> hive-log4j.properties
hive-exec-log4j.properties.template --> hive-exec-log4j.properties
hive-env.sh.template --> hive-env.sh
# Set HADOOP_HOME to point to a specific hadoop install directory
HADOOP_HOME=/opt/software/hadoop-2.5.0-cdh5.3.6/
# Hive Configuration Directory can be controlled by:
export HIVE_CONF_DIR=/opt/software/hive-0.13.1-cdh5.3.6/conf/
# Folder containing extra ibraries required for hive compilation/execution can be controlled by:
export HIVE_AUX_JARS_PATH=/opt/software/hive-0.13.1-cdh5.3.6/lib/
<property> <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:mysql://NameNode1:3306/hive?createDatabaseIfNotExist=true</value> <description>JDBC connect string for a JDBC metastore</description> </property> <property> <name>javax.jdo.option.ConnectionDriverName</name> <value>com.mysql.jdbc.Driver</value> <description>Driver class name for a JDBC metastore</description> </property> <property> <name>javax.jdo.option.ConnectionUserName</name> <value>hive</value> <description>username to use against metastore database</description> </property> <property> <name>javax.jdo.option.ConnectionPassword</name> <value>123</value> <description>password to use against metastore database</description> </property> <!--用于远程链接--> <property> <name>hive.metastore.uris</name> <value>thrift://127.0.0.1:9083</value> </property> <!--这个参数用于启动hiveserver2,默认值存在bug 后续版本已修复--> <property> <name>hive.server2.long.polling.timeout</name> <value>5000ms</value> <description>Time in milliseconds that HiveServer2 will wait, before responding to asynchronous calls that use long polling</description> </property>
<!--hive须要用到的包--> <property> <name>hive.aux.jars.path</name> <value>file:///opt/software/hive/lib/hive-hbase-handler-0.13.1-cdh5.3.6.jar,file:///opt/software/hive/lib/zookeeper-3.4.5-cdh5.3.6.jar,file:///opt/software/hive/lib/hbase-client-0.98.6-cdh5.3.6.jar</value> </property>
$HADOOP_HOME/bin/hadoop fs -mkdir /tmp $HADOOP_HOME/bin/hadoop fs -mkdir /user/hive/warehouse $HADOOP_HOME/bin/hadoop fs -chmod g+w /tmp $HADOOP_HOME/bin/hadoop fs -chmod g+w /user/hive/warehouse
bin/hive --service metastore & #后面的&是用来让hive服务在后台运行,没有&的话 关掉服务所在的ssh链接时,服务也会stop
#启动成功后,敲任意键回到shell命令输入模式,而后输入exit退出便可(经过命令而不是直接关闭客户端)
# bin/hive --service hiveserver & #这个命令启动的服务用于java的api调用。若是没有这个需求则不须要执行该命令
其余:
①hive命令的调用有3种方式:
./hive –f ./hive-script.sql
./hive -e 'select * from table'
②UDF的建立
package com.sarnath.jobtask.hive.udf; import org.apache.hadoop.hive.ql.exec.Description; import org.apache.hadoop.hive.ql.exec.UDF;; /** * 将时间字符串转换成所在的5分钟区间 * * @author Zhanglei 2016年12月2日 */ @Description(name = "get5minTimeZone", value = "FUNC<time> - cast string to 5min timezone?") public class get5minTimeZone extends UDF { public long evaluate(long time) { long minTotal = time/60;//总分钟数 long timeValue = minTotal*60;// 时间值 /* * 精确到秒的时间 + 5秒 - 秒位数值与5的余数 */ return timeValue + 5 * 60 - timeValue % (5 * 60); } }
#若是已存在 要先删除 #drop function get5minTimeZone; create function get5minTimeZone as 'com.sarnath.jobtask.hive.udf.logTimeConvert' using jar 'hdfs:///user/hadoop/hiveUDF/jobtask.jar';
③相关command
create table logdetail(proxyip string,origin string) row format delimited fields terminated by ';';
create table logdetail(proxyip string ,origin string) partitioned by(logdate string);
show partitions tablename;
load data [local] inpath '/opt/software/log/log2016_12_15.log' overwrite into table logdetail;
CREATE TABLE log(time string,total int) STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,f:total") TBLPROPERTIES ("hbase.table.name" = "hbaseloghour");
参考:
附:
① 批处理执行脚本(当前节点为NameNode1)
从新格式化时,须要删除数据的脚本
echo --remove hdfs data rm -rf /opt/hdfsdata/datanode/* rm -rf /opt/hdfsdata/namenode/* rm -rf /home/hadoop/data/hdfs/namenode/* rm -rf /home/hadoop/data/hdfs/datanode/* ssh NameNode2 'rm -rf /opt/hdfsdata/datanode/*' ssh NameNode2 'rm -rf /opt/hdfsdata/namenode/*' ssh NameNode2 'rm -rf /home/hadoop/data/hdfs/namenode/*' ssh NameNode2 'rm -rf /home/hadoop/data/hdfs/datanode/*' ssh DataNode1 'rm -rf /opt/hdfsdata/datanode/*' ssh DataNode1 'rm -rf /opt/hdfsdata/namenode/*' ssh DataNode1 'rm -rf /home/hadoop/data/hdfs/namenode/*' ssh DataNode1 'rm -rf /home/hadoop/data/hdfs/datanode/*' ssh DataNode2 'rm -rf /opt/hdfsdata/datanode/*' ssh DataNode2 'rm -rf /opt/hdfsdata/namenode/*' ssh DataNode2 'rm -rf /home/hadoop/data/hdfs/namenode/*' ssh DataNode2 'rm -rf /home/hadoop/data/hdfs/datanode/*' ssh DataNode3 'rm -rf /opt/hdfsdata/datanode/*' ssh DataNode3 'rm -rf /opt/hdfsdata/namenode/*' ssh DataNode3 'rm -rf /home/hadoop/data/hdfs/namenode/*' ssh DataNode3 'rm -rf /home/hadoop/data/hdfs/datanode/*' echo --remove zookeeper data rm -rf ~/data/zookeeper/version-2/* rm -rf ~/data/zookeeper/zookeeper_server.pid ssh NameNode2 'rm -rf ~/data/zookeeper/version-2/*' ssh NameNode2 'rm -rf ~/data/zookeeper/zookeeper_server.pid' ssh DataNode1 'rm -rf ~/data/zookeeper/version-2/*' ssh DataNode1 'rm -rf ~/data/zookeeper/zookeeper_server.pid' ssh DataNode2 'rm -rf ~/data/zookeeper/version-2/*' ssh DataNode2 'rm -rf ~/data/zookeeper/zookeeper_server.pid' ssh DataNode3 'rm -rf ~/data/zookeeper/version-2/*' ssh DataNode3 'rm -rf ~/data/zookeeper/zookeeper_server.pid' echo --remove hadoop logs rm -rf /opt/software/hadoop-2.5.0-cdh5.3.6/tmp rm -rf /home/hadoop/logs/hadoop ssh NameNode2 'rm -rf /opt/software/hadoop-2.5.0-cdh5.3.6/tmp' ssh NameNode2 'rm -rf /home/hadoop/logs/hadoop' ssh DataNode1 'rm -rf /opt/software/hadoop-2.5.0-cdh5.3.6/tmp' ssh DataNode1 'rm -rf /home/hadoop/logs/hadoop' ssh DataNode2 'rm -rf /opt/software/hadoop-2.5.0-cdh5.3.6/tmp' ssh DataNode2 'rm -rf /home/hadoop/logs/hadoop' ssh DataNode3 'rm -rf /opt/software/hadoop-2.5.0-cdh5.3.6/tmp' ssh DataNode3 'rm -rf /home/hadoop/logs/hadoop' echo --remove hbase logs rm -rf ~/logs/hbase/* ssh NameNode2 'rm -rf ~/logs/hbase/*' ssh DataNode1 'rm -rf ~/logs/hbase/*' ssh DataNode2 'rm -rf ~/logs/hbase/*' ssh DataNode3 'rm -rf ~/logs/hbase/*'
启动过程的脚本
echo --start zookeeper /opt/software/zookeeper-3.4.5-cdh5.3.6/bin/zkServer.sh start ssh NameNode2 '/opt/software/zookeeper-3.4.5-cdh5.3.6/bin/zkServer.sh start' ssh DataNode1 '/opt/software/zookeeper-3.4.5-cdh5.3.6/bin/zkServer.sh start' ssh DataNode2 '/opt/software/zookeeper-3.4.5-cdh5.3.6/bin/zkServer.sh start' ssh DataNode3 '/opt/software/zookeeper-3.4.5-cdh5.3.6/bin/zkServer.sh start' echo --start journalnodes cluster ssh DataNode1 '/opt/software/hadoop-2.5.0-cdh5.3.6/sbin/hadoop-daemon.sh start journalnode' ssh DataNode2 '/opt/software/hadoop-2.5.0-cdh5.3.6/sbin/hadoop-daemon.sh start journalnode' ssh DataNode3 '/opt/software/hadoop-2.5.0-cdh5.3.6/sbin/hadoop-daemon.sh start journalnode' echo --format one namenode /opt/software/hadoop-2.5.0-cdh5.3.6/bin/hdfs namenode -format /opt/software/hadoop-2.5.0-cdh5.3.6/sbin/hadoop-daemon.sh start namenode echo --format another namenode ssh NameNode2 '/opt/software/hadoop-2.5.0-cdh5.3.6/bin/hdfs namenode -bootstrapStandby' sleep 10 ssh NameNode2 '/opt/software/hadoop-2.5.0-cdh5.3.6/sbin/hadoop-daemon.sh start namenode' sleep 10 #echo --start all datanodes /opt/software/hadoop-2.5.0-cdh5.3.6/sbin/hadoop-daemons.sh start datanode echo --zookeeper init /opt/software/hadoop-2.5.0-cdh5.3.6/bin/hdfs zkfc -formatZK echo --start hdfs /opt/software/hadoop-2.5.0-cdh5.3.6/sbin/start-dfs.sh echo --start yarn /opt/software/hadoop-2.5.0-cdh5.3.6/sbin/start-yarn.sh ssh NameNode2 '/opt/software/hadoop-2.5.0-cdh5.3.6/sbin/yarn-daemon.sh start resourcemanager' /opt/software/hadoop-2.5.0-cdh5.3.6/sbin/mr-jobhistory-daemon.sh start historyserver /opt/software/hadoop-2.5.0-cdh5.3.6/sbin/yarn-daemon.sh start proxyserver
③用MapReduce操做HBase
默认状况下,在MapReduce中操做HBase的时候 会出现各类 java.lang.NoClassDefFoundError 问题,这是由于没有提供相关jar包。解决方法:
HBase官网文档中的路径是错误的,把jar包放到lib下面是没有用的
④hdfs相关命令
//刷新节点 $HADOOP_HOME/bin/hadoop dfsadmin -refreshNodes //查看目录大小 hadoop dfs -count -q <dir> //查看目录下子目录大小 hadoop dfs -du <dir>