简介linux
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump能够将网络中传送的数据包的“头”彻底截获下来提供分析。它支持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。ios
默认启动git
1
|
tcpdump
|
普通状况下,直接启动tcpdump将监视第一个网络接口上全部流过的数据包。程序员
监视指定网络接口的数据包web
1
|
tcpdump -i eth1
|
若是不指定网卡,默认tcpdump只会监视第一个网络接口,通常是eth0,下面的例子都没有指定网络接口。正则表达式
监视指定主机的数据包算法
打印全部进入或离开sundown的数据包.shell
1
|
tcpdump host sundown
|
也能够指定ip,例如截获全部210.27.48.1 的主机收到的和发出的全部的数据包数据库
1
|
tcpdump host 210.27.48.1
|
打印helios 与 hot 或者与 ace 之间通讯的数据包express
1
|
tcpdump host helios and ( hot or ace )
|
截获主机210.27.48.1 和主机210.27.48.2 或210.27.48.3的通讯
1
|
tcpdump host 210.27.48.1 and (210.27.48.2 or 210.27.48.3 )
|
打印ace与任何其余主机之间通讯的IP 数据包, 但不包括与helios之间的数据包.
1
|
tcpdump ip host ace and not helios
|
若是想要获取主机210.27.48.1除了和主机210.27.48.2以外全部主机通讯的ip包,使用命令:
1
|
tcpdump ip host 210.27.48.1 and ! 210.27.48.2
|
截获主机hostname发送的全部数据
1
|
tcpdump -i eth0 src host hostname
|
监视全部送到主机hostname的数据包
1
|
tcpdump -i eth0 dst host hostname
|
监视指定主机和端口的数据包
若是想要获取主机210.27.48.1接收或发出的telnet包,使用以下命令
1
|
tcpdump tcp port 23 and host 210.27.48.1
|
对本机的udp 123 端口进行监视 123 为ntp的服务端口
1
|
tcpdump udp port 123
|
监视指定网络的数据包
打印本地主机与Berkeley网络上的主机之间的全部通讯数据包(nt: ucb-ether, 此处可理解为’Berkeley网络’的网络地址,此表达式最原始的含义可表达为: 打印网络地址为ucb-ether的全部数据包)
1
|
tcpdump net ucb-ether
|
打印全部经过网关snup的ftp数据包(注意, 表达式被单引号括起来了, 这能够防止shell对其中的括号进行错误解析)
1
|
tcpdump 'gateway snup and (port ftp or ftp-data)'
|
打印全部源地址或目标地址是本地主机的IP数据包
(若是本地网络经过网关连到了另外一网络, 则另外一网络并不能算做本地网络.(nt: 此句翻译曲折,需补充).localnet 实际使用时要真正替换成本地网络的名字)
1
|
tcpdump ip and not net localnet
|
监视指定协议的数据包
打印TCP会话中的的开始和结束数据包, 而且数据包的源或目的不是本地网络上的主机.(nt: localnet, 实际使用时要真正替换成本地网络的名字))
1
|
tcpdump 'tcp[tcpflags]
|
打印全部源或目的端口是80, 网络层协议为IPv4, 而且含有数据,而不是SYN,FIN以及ACK-only等不含数据的数据包.(ipv6的版本的表达式可作练习)
1
|
tcpdump 'tcp port 80 and (((ip[2:2] - ((ip[0]
|
(nt: 可理解为, ip[2:2]表示整个ip数据包的长度, (ip[0]&0xf)
成字节数须要乘以4, 即左移2. (tcp[12]&0xf0)>>4 表示tcp头的长度, 此域的单位也是32bit, 换算成比特数为 ((tcp[12]&0xf0) >> 4) 即 ((tcp[12]&0xf0)>>2). ((ip[2:2] – ((ip[0]&0xf)>2)) != 0 表示: 整个ip数据包的长度减去ip头的长度,再减去
tcp头的长度不为0, 这就意味着, ip数据包中确实是有数据.对于ipv6版本只需考虑ipv6头中的’Payload Length’ 与 ‘tcp头的长度’的差值, 而且其中表达方式’ip[]‘需换成’ip6[]‘.)
打印长度超过576字节, 而且网关地址是snup的IP数据包
1
|
tcpdump 'gateway snup and ip[2:2] > 576'
|
打印全部IP层广播或多播的数据包, 但不是物理以太网层的广播或多播数据报
1
|
tcpdump 'ether[0]
|
打印除’echo request’或者’echo reply’类型之外的ICMP数据包( 好比,须要打印全部非ping 程序产生的数据包时可用到此表达式 .
(nt: ‘echo reuqest’ 与 ‘echo reply’ 这两种类型的ICMP数据包一般由ping程序产生))
1
|
tcpdump 'icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-echoreply'
|
Wireshark(之前是ethereal)是Windows下很是简单易用的抓包工具。但在Linux下很难找到一个好用的图形化抓包工具。
还好有Tcpdump。咱们能够用Tcpdump + Wireshark 的完美组合实现:在 Linux 里抓包,而后在Windows 里分析包。
1
|
tcpdump tcp -i eth1 -t -s 0 -c 100 and dst port ! 22 and src net 192.168.1.0/24 -w ./target.cap
|
(1)tcp: ip icmp arp rarp 和 tcp、udp、icmp这些选项等都要放到第一个参数的位置,用来过滤数据报的类型
(2)-i eth1 : 只抓通过接口eth1的包
(3)-t : 不显示时间戳
(4)-s 0 : 抓取数据包时默认抓取长度为68字节。加上-S 0 后能够抓到完整的数据包
(5)-c 100 : 只抓取100个数据包
(6)dst port ! 22 : 不抓取目标端口是22的数据包
(7)src net 192.168.1.0/24 : 数据包的源网络地址为192.168.1.0/24
(8)-w ./target.cap : 保存成cap文件,方便用ethereal(即wireshark)分析
1
|
tcpdump -XvvennSs 0 -i eth0 tcp[20:2]=0x4745 or tcp[20:2]=0x4854
|
0×4745 为”GET”前两个字母”GE”,0×4854 为”HTTP”前两个字母”HT”。
tcpdump 对截获的数据并无进行完全解码,数据包内的大部份内容是使用十六进制的形式直接打印输出的。显然这不利于分析网络故障,一般的解决办法是先使用带-w参数的tcpdump 截获数据并保存到文件中,而后再使用其余程序(如Wireshark)进行解码分析。固然也应该定义过滤规则,以免捕获的数据包填满整个硬盘。
首先咱们注意一下,基本上tcpdump总的的输出格式为:系统时间 来源主机.端口 > 目标主机.端口 数据包参数
tcpdump 的输出格式与协议有关.如下简要描述了大部分经常使用的格式及相关例子.
对于FDDI网络, ‘-e’ 使tcpdump打印出指定数据包的’frame control’ 域, 源和目的地址, 以及包的长度.(frame control域
控制对包中其余域的解析). 通常的包(好比那些IP datagrams)都是带有’async’(异步标志)的数据包,而且有取值0到7的优先级;
好比 ‘async4′就表明此包为异步数据包,而且优先级别为4. 一般认为,这些包们会内含一个 LLC包(逻辑链路控制包); 这时,若是此包
不是一个ISO datagram或所谓的SNAP包,其LLC头部将会被打印(nt:应该是指此包内含的 LLC包的包头).
对于Token Ring网络(令牌环网络), ‘-e’ 使tcpdump打印出指定数据包的’frame control’和’access control’域, 以及源和目的地址,
外加包的长度. 与FDDI网络相似, 此数据包一般内含LLC数据包. 无论 是否有’-e’选项.对于此网络上的’source-routed’类型数据包(nt:
意译为:源地址被追踪的数据包,具体含义未知,需补充), 其包的源路由信息总会被打印.
对于802.11网络(WLAN,即wireless local area network), ‘-e’ 使tcpdump打印出指定数据包的’frame control域,
包头中包含的全部地址, 以及包的长度.与FDDI网络相似, 此数据包一般内含LLC数据包.
(注意: 如下的描述会假设你熟悉SLIP压缩算法 (nt:SLIP为Serial Line Internet Protocol.), 这个算法能够在
RFC-1144中找到相关的蛛丝马迹.)
对于SLIP网络(nt:SLIP links, 可理解为一个网络, 即经过串行线路创建的链接, 而一个简单的链接也可当作一个网络),
数据包的’direction indicator’(‘方向指示标志’)(“I”表示入, “O”表示出), 类型以及压缩信息将会被打印. 包类型会被首先打印.
类型分为ip, utcp以及ctcp(nt:未知, 需补充). 对于ip包,链接信息将不被打印(nt:SLIP链接上,ip包的链接信息可能无用或没有定义.
reconfirm).对于TCP数据包, 链接标识紧接着类型表示被打印. 若是此包被压缩, 其被编码过的头部将被打印.
此时对于特殊的压缩包,会以下显示:
*S+n 或者 *SA+n, 其中n表明包的(顺序号或(顺序号和应答号))增长或减小的数目(nt | rt:S,SA拗口, 需再译).
对于非特殊的压缩包,0个或更多的’改变’将会被打印.’改变’被打印时格式以下:
‘标志’+/-/=n 包数据的长度 压缩的头部长度.
其中’标志’能够取如下值:
U(表明紧急指针), W(指缓冲窗口), A(应答), S(序列号), I(包ID),而增量表达’=n’表示被赋予新的值, +/-表示增长或减小.
好比, 如下显示了对一个外发压缩TCP数据包的打印, 这个数据包隐含一个链接标识(connection identifier); 应答号增长了6,
顺序号增长了49, 包ID号增长了6; 包数据长度为3字节(octect), 压缩头部为6字节.(nt:如此看来这应该不是一个特殊的压缩数据包).
ARP/RARP 数据包
tcpdump对Arp/rarp包的输出信息中会包含请求类型及该请求对应的参数. 显示格式简洁明了. 如下是从主机rtsg到主机csam的’rlogin’
(远程登陆)过程开始阶段的数据包样例:
1
2
|
arp who-has csam tell rtsg
arp reply csam is-at CSAM
|
第一行表示:rtsg发送了一个arp数据包(nt:向全网段发送,arp数据包)以询问csam的以太网地址
Csam(nt:可从下文看出来, 是Csam)以她本身的以太网地址作了回应(在这个例子中, 以太网地址以大写的名字标识, 而internet
地址(即ip地址)以所有的小写名字标识).
若是使用tcpdump -n, 能够清晰看到以太网以及ip地址而不是名字标识:
arp who-has 128.3.254.6 tell 128.3.254.68
arp reply 128.3.254.6 is-at 02:07:01:00:01:c4
若是咱们使用tcpdump -e, 则能够清晰的看到第一个数据包是全网广播的, 而第二个数据包是点对点的:
RTSG Broadcast 0806 64: arp who-has csam tell rtsg
CSAM RTSG 0806 64: arp reply csam is-at CSAM
第一个数据包代表:以arp包的源以太地址是RTSG, 目标地址是全以太网段, type域的值为16进制0806(表示ETHER_ARP(nt:arp包的类型标识)),
包的总长度为64字节.
(注意:如下将会假定你对 RFC-793所描述的TCP熟悉. 若是不熟, 如下描述以及tcpdump程序可能对你帮助不大.(nt:警告可忽略,
只需继续看, 不熟悉的地方可回头再看.).
一般tcpdump对tcp数据包的显示格式以下:
src > dst: flags data-seqno ack window urgent options
src 和 dst 是源和目的IP地址以及相应的端口. flags 标志由S(SYN), F(FIN), P(PUSH, R(RST),
W(ECN CWT(nt | rep:未知, 需补充))或者 E(ECN-Echo(nt | rep:未知, 需补充))组成,
单独一个’.'表示没有flags标识. 数据段顺序号(Data-seqno)描述了此包中数据所对应序列号空间中的一个位置(nt:整个数据被分段,
每段有一个顺序号, 全部的顺序号构成一个序列号空间)(可参考如下例子). Ack 描述的是同一个链接,同一个方向,下一个本端应该接收的
(对方应该发送的)数据片断的顺序号. Window是本端可用的数据接收缓冲区的大小(也是对方发送数据时需根据这个大小来组织数据).
Urg(urgent) 表示数据包中有紧急的数据. options 描述了tcp的一些选项, 这些选项都用尖括号来表示(如 ).
src, dst 和 flags 这三个域老是会被显示. 其余域的显示与否依赖于tcp协议头里的信息.
这是一个从trsg到csam的一个rlogin应用登陆的开始阶段.
rtsg.1023 > csam.login: S 768512:768512(0) win 4096
csam.login > rtsg.1023: S 947648:947648(0) ack 768513 win 4096
rtsg.1023 > csam.login: . ack 1 win 4096
rtsg.1023 > csam.login: P 1:2(1) ack 1 win 4096
csam.login > rtsg.1023: . ack 2 win 4096
rtsg.1023 > csam.login: P 2:21(19) ack 1 win 4096
csam.login > rtsg.1023: P 1:2(1) ack 21 win 4077
csam.login > rtsg.1023: P 2:3(1) ack 21 win 4077 urg 1
csam.login > rtsg.1023: P 3:4(1) ack 21 win 4077 urg 1
第一行表示有一个数据包从rtsg主机的tcp端口1023发送到了csam主机的tcp端口login上(nt:udp协议的端口和tcp协议的端
口是分别的两个空间, 虽然取值范围一致). S表示设置了SYN标志. 包的顺序号是768512, 而且没有包含数据.(表示格式
为:’first:last(nbytes)’, 其含义是’此包中数据的顺序号从first开始直到last结束,不包括last. 而且总共包含nbytes的
用户数据’.) 没有捎带应答(nt:从下文来看,第二行才是有捎带应答的数据包), 可用的接受窗口的大小为4096bytes, 而且请求端(rtsg)
的最大可接受的数据段大小是1024字节(nt:这个信息做为请求发向应答端csam, 以便双方进一步的协商).
Csam 向rtsg 回复了基本相同的SYN数据包, 其区别只是多了一个’ piggy-backed ack’(nt:捎带回的ack应答, 针对rtsg的SYN数据包).
rtsg 一样针对csam的SYN数据包回复了一ACK数据包做为应答. ‘.’的含义就是此包中没有标志被设置. 因为此应答包中不含有数据, 因此
包中也没有数据段序列号. 提醒! 此ACK数据包的顺序号只是一个小整数1. 有以下解释:tcpdump对于一个tcp链接上的会话, 只打印会话两端的
初始数据包的序列号,其后相应数据包只打印出与初始包序列号的差别.即初始序列号以后的序列号, 可被看做此会话上当前所传数据片断在整个
要传输的数据中的’相对字节’位置(nt:双方的第一个位置都是1, 即’相对字节’的开始编号). ’-S’将覆盖这个功能,
使数据包的原始顺序号被打印出来.
第六行的含义为:rtsg 向 csam发送了19字节的数据(字节的编号为2到20,传送方向为rtsg到csam). 包中设置了PUSH标志. 在第7行,
csam 喊到, 她已经从rtsg中收到了21如下的字节, 但不包括21编号的字节. 这些字节存放在csam的socket的接收缓冲中, 相应地,
csam的接收缓冲窗口大小会减小19字节(nt:能够从第5行和第7行win属性值的变化看出来). csam在第7行这个包中也向rtsg发送了一个
字节. 在第8行和第9行, csam 继续向rtsg 分别发送了两个只包含一个字节的数据包, 而且这个数据包带PUSH标志.
若是所抓到的tcp包(nt:即这里的snapshot)过小了,以致tcpdump没法完整获得其头部数据, 这时, tcpdump会尽可能解析这个不完整的头,
并把剩下不能解析的部分显示为’[|tcp]‘. 若是头部含有虚假的属性信息(好比其长度属性其实比头部实际长度长或短), tcpdump会为该头部
显示’[bad opt]‘. 若是头部的长度告诉咱们某些选项(nt | rt:从下文来看, 指tcp包的头部中针对ip包的一些选项, 回头再翻)会在此包中,
而真正的IP(数据包的长度又不够容纳这些选项, tcpdump会显示’[bad hdr length]‘.
抓取带有特殊标志的的TCP包(如SYN-ACK标志, URG-ACK标志等).
在TCP的头部中, 有8比特(bit)用做控制位区域, 其取值为:
CWR | ECE | URG | ACK | PSH | RST | SYN | FIN
(nt | rt:从表达方式上可推断:这8个位是用或的方式来组合的, 可回头再翻)
现假设咱们想要监控创建一个TCP链接整个过程当中所产生的数据包. 可回忆以下:TCP使用3次握手协议来创建一个新的链接; 其与此三次握手
链接顺序对应,并带有相应TCP控制标志的数据包以下:
1) 链接发起方(nt:Caller)发送SYN标志的数据包
2) 接收方(nt:Recipient)用带有SYN和ACK标志的数据包进行回应
3) 发起方收到接收方回应后再发送带有ACK标志的数据包进行回应
0 15 31
—————————————————————–
| source port | destination port |
—————————————————————–
| sequence number |
—————————————————————–
| acknowledgment number |
—————————————————————–
| HL | rsvd |C|E|U|A|P|R|S|F| window size |
—————————————————————–
| TCP checksum | urgent pointer |
—————————————————————–
一个TCP头部,在不包含选项数据的状况下一般占用20个字节(nt | rt:options 理解为选项数据,需回译). 第一行包含0到3编号的字节,
第二行包含编号4-7的字节.
若是编号从0开始算, TCP控制标志位于13字节(nt:第四行左半部分).
0 7| 15| 23| 31
—————-|—————|—————|—————-
| HL | rsvd |C|E|U|A|P|R|S|F| window size |
—————-|—————|—————|—————-
| | 13th octet | | |
让咱们仔细看看编号13的字节:
| |
|—————|
|C|E|U|A|P|R|S|F|
|—————|
|7 5 3 0|
这里有咱们感兴趣的控制标志位. 从右往左这些位被依次编号为0到7, 从而 PSH位在3号, 而URG位在5号.
提醒一下本身, 咱们只是要获得包含SYN标志的数据包. 让咱们看看在一个包的包头中, 若是SYN位被设置, 到底
在13号字节发生了什么:
|C|E|U|A|P|R|S|F|
|—————|
|0 0 0 0 0 0 1 0|
|—————|
|7 6 5 4 3 2 1 0|
在控制段的数据中, 只有比特1(bit number 1)被置位.
假设编号为13的字节是一个8位的无符号字符型,而且按照网络字节号排序(nt:对于一个字节来讲,网络字节序等同于主机字节序), 其二进制值
以下所示:
00000010
而且其10进制值为:
0*2^7 + 0*2^6 + 0*2^5 + 0*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 2(nt: 1 * 2^6 表示1乘以2的6次方, 也许这样更
清楚些, 即把原来表达中的指数7 6 … 0挪到了下面来表达)
接近目标了, 由于咱们已经知道, 若是数据包头部中的SYN被置位, 那么头部中的第13个字节的值为2(nt: 按照网络序, 即大头方式, 最重要的字节
在前面(在前面,即该字节实际内存地址比较小, 最重要的字节,指数学表示中数的高位, 如356中的3) ).
表达为tcpdump能理解的关系式就是:
tcp[13] 2
从而咱们能够把此关系式看成tcpdump的过滤条件, 目标就是监控只含有SYN标志的数据包:
tcpdump -i xl0 tcp[13] 2 (nt: xl0 指网络接口, 如eth0)
这个表达式是说”让TCP数据包的第13个字节拥有值2吧”, 这也是咱们想要的结果.
如今, 假设咱们须要抓取带SYN标志的数据包, 而忽略它是否包含其余标志.(nt:只要带SYN就是咱们想要的). 让咱们来看看当一个含有
SYN-ACK的数据包(nt:SYN 和 ACK 标志都有), 来到时发生了什么:
|C|E|U|A|P|R|S|F|
|—————|
|0 0 0 1 0 0 1 0|
|—————|
|7 6 5 4 3 2 1 0|
13号字节的1号和4号位被置位, 其二进制的值为:
00010010
转换成十进制就是:
0*2^7 + 0*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2 = 18(nt: 1 * 2^6 表示1乘以2的6次方, 也许这样更
清楚些, 即把原来表达中的指数7 6 … 0挪到了下面来表达)
如今, 却不能只用’tcp[13] 18′做为tcpdump的过滤表达式, 由于这将致使只选择含有SYN-ACK标志的数据包, 其余的都被丢弃.
提醒一下本身, 咱们的目标是: 只要包的SYN标志被设置就行, 其余的标志咱们不理会.
为了达到咱们的目标, 咱们须要把13号字节的二进制值与其余的一个数作AND操做(nt:逻辑与)来获得SYN比特位的值. 目标是:只要SYN 被设置
就行, 因而咱们就把她与上13号字节的SYN值(nt: 00000010).
00010010 SYN-ACK 00000010 SYN
AND 00000010 (we want SYN) AND 00000010 (we want SYN)
——– ——–
= 00000010 = 00000010
咱们能够发现, 无论包的ACK或其余标志是否被设置, 以上的AND操做都会给咱们相同的值, 其10进制表达就是2(2进制表达就是00000010).
从而咱们知道, 对于带有SYN标志的数据包, 如下的表达式的结果老是真(true):
( ( value of octet 13 ) AND ( 2 ) ) ( 2 ) (nt: value of octet 13, 即13号字节的值)
灵感随之而来, 咱们因而获得了以下的tcpdump 的过滤表达式
tcpdump -i xl0 ‘tcp[13] & 2 2′
注意, 单引号或反斜杆(nt: 这里用的是单引号)不能省略, 这能够防止shell对&的解释或替换.
UDP 数据包的显示格式,可经过rwho这个具体应用所产生的数据包来讲明:
actinide.who > broadcast.who: udp 84
其含义为:actinide主机上的端口who向broadcast主机上的端口who发送了一个udp数据包(nt: actinide和broadcast都是指Internet地址).
这个数据包承载的用户数据为84个字节.
一些UDP服务可从数据包的源或目的端口来识别,也可从所显示的更高层协议信息来识别. 好比, Domain Name service requests(DNS 请求,
在RFC-1034/1035中), 和Sun RPC calls to NFS(对NFS服务器所发起的远程调用(nt: 即Sun RPC),在RFC-1050中有对远程调用的描述).
UDP 名称服务请求
(注意:如下的描述假设你对Domain Service protoco(nt:在RFC-103中有所描述), 不然你会发现如下描述就是天书(nt:希腊文天书,
没必要理会, 吓吓你的, 接着看就行))
名称服务请求有以下的格式:
src > dst: id op? flags qtype qclass name (len)
(nt: 从下文来看, 格式应该是src > dst: id op flags qtype qclass? name (len))
好比有一个实际显示为:
h2opolo.1538 > helios.domain: 3+ A? ucbvax.berkeley.edu. (37)
主机h2opolo 向helios 上运行的名称服务器查询ucbvax.berkeley.edu 的地址记录(nt: qtype等于A). 此查询自己的id号为’3′. 符号
‘+’意味着递归查询标志被设置(nt: dns服务器可向更高层dns服务器查询本服务器不包含的地址记录). 这个最终经过IP包发送的查询请求
数据长度为37字节, 其中不包括UDP和IP协议的头数据. 由于此查询操做为默认值(nt | rt: normal one的理解), op字段被省略.
若是op字段没被省略, 会被显示在’3′ 和’+'之间. 一样, qclass也是默认值, C_IN, 从而也没被显示, 若是没被忽略, 她会被显示在’A'以后.
异常检查会在方括中显示出附加的域: 若是一个查询同时包含一个回应(nt: 可理解为, 对以前其余一个请求的回应), 而且此回应包含权威或附加记录段,
ancount, nscout, arcount(nt: 具体字段含义需补充) 将被显示为’[na]‘, ‘[nn]‘, ‘[nau]‘, 其中n表明合适的计数. 若是包中如下
回应位(好比AA位, RA位, rcode位), 或者字节2或3中任何一个’必须为0′的位被置位(nt: 设置为1), ‘[b2&3]=x’ 将被显示, 其中x表示
头部字节2与字节3进行与操做后的值.
UDP 名称服务应答
对名称服务应答的数据包,tcpdump会有以下的显示格式
src > dst: id op rcode flags a/n/au type class data (len)
好比具体显示以下:
helios.domain > h2opolo.1538: 3 3/3/7 A 128.32.137.3 (273)
helios.domain > h2opolo.1537: 2 NXDomain* 0/1/0 (97)
第一行表示: helios 对h2opolo 所发送的3号查询请求回应了3条回答记录(nt | rt: answer records), 3条名称服务器记录,
以及7条附加的记录. 第一个回答记录(nt: 3个回答记录中的第一个)类型为A(nt: 表示地址), 其数据为internet地址128.32.137.3.
此回应UDP数据包, 包含273字节的数据(不包含UPD和IP的头部数据). op字段和rcode字段被忽略(nt: op的实际值为Query, rcode, 即
response code的实际值为NoError), 一样被忽略的字段还有class 字段(nt | rt: 其值为C_IN, 这也是A类型记录默认取值)
第二行表示: helios 对h2opolo 所发送的2号查询请求作了回应. 回应中, rcode编码为NXDomain(nt: 表示不存在的域)), 没有回答记录,
但包含一个名称服务器记录, 不包含权威服务器记录(nt | ck: 从上文来看, 此处的authority records 就是上文中对应的additional
records). ‘*’表示权威服务器回答标志被设置(nt: 从而additional records就表示的是authority records).
因为没有回答记录, type, class, data字段都被忽略.
flag字段还有可能出现其余一些字符, 好比’-'(nt: 表示可递归地查询, 即RA 标志没有被设置), ‘|’(nt: 表示被截断的消息, 即TC 标志
被置位). 若是应答(nt | ct: 可理解为, 包含名称服务应答的UDP数据包, tcpdump知道这类数据包该怎样解析其数据)的’question’段一个条
目(entry)都不包含(nt: 每一个条目的含义, 需补充),’[nq]‘ 会被打印出来.
要注意的是:名称服务器的请求和应答数据量比较大, 而默认的68字节的抓取长度(nt: snaplen, 可理解为tcpdump的一个设置选项)可能不足以抓取
数据包的所有内容. 若是你真的须要仔细查看名称服务器的负载, 能够经过tcpdump 的-s 选项来扩大snaplen值.
tcpdump 已能够对SMB/CIFS/NBT相关应用的数据包内容进行解码(nt: 分别为’Server Message Block Common’, ‘Internet File System’
‘在TCP/IP上实现的网络协议NETBIOS的简称’. 这几个服务一般使用UDP的137/138以及TCP的139端口). 原来的对IPX和NetBEUI SMB数据包的
解码能力依然能够被使用(nt: NetBEUI为NETBIOS的加强版本).
tcpdump默认只按照最简约模式对相应数据包进行解码, 若是咱们想要详尽的解码信息可使用其-v 启动选现. 要注意的是, -v 会产生很是详细的信息,
好比对单一的一个SMB数据包, 将产生一屏幕或更多的信息, 因此此选项, 确有须要才使用.
关于SMB数据包格式的信息, 以及每一个域的含义能够参看www.cifs.org 或者samba.org 镜像站点的pub/samba/specs/ 目录. linux 上的SMB 补丁
(nt | rt: patch)由 Andrew Tridgell (tridge@samba.org)提供.
NFS 请求和回应
tcpdump对Sun NFS(网络文件系统)请求和回应的UDP数据包有以下格式的打印输出:
src.xid > dst.nfs: len op args
src.nfs > dst.xid: reply stat len op results
如下是一组具体的输出数据
sushi.6709 > wrl.nfs: 112 readlink fh 21,24/10.73165
wrl.nfs > sushi.6709: reply ok 40 readlink “../var”
sushi.201b > wrl.nfs:
144 lookup fh 9,74/4096.6878 “xcolors”
wrl.nfs > sushi.201b:
reply ok 128 lookup fh 9,74/4134.3150
第一行输出代表: 主机sushi向主机wrl发送了一个’交换请求’(nt: transaction), 此请求的id为6709(注意, 主机名字后是交换
请求id号, 而不是源端口号). 此请求数据为112字节, 其中不包括UDP和IP头部的长度. 操做类型为readlink(nt: 即此操做为读符号连接操做),
操做参数为fh 21,24/10.73165(nt: 可按实际运行环境, 解析以下, fd 表示描述的为文件句柄, 21,24 表示此句柄所对应设
备的主/从设备号对, 10表示此句柄所对应的i节点编号(nt:每一个文件都会在操做系统中对应一个i节点, 限于unix类系统中),
73165是一个编号(nt: 可理解为标识此请求的一个随机数, 具体含义需补充)).
第二行中, wrl 作了’ok’的回应, 而且在results 字段中返回了sushi想要读的符号链接的真实目录(nt: 即sushi要求读的符号链接实际上是一个目录).
第三行代表: sushi 再次请求 wrl 在’fh 9,74/4096.6878′所描述的目录中查找’xcolors’文件. 须要注意的是, 每行所显示的数据含义依赖于其中op字段的
类型(nt: 不一样op 所对应args 含义不相同), 其格式遵循NFS 协议, 追求简洁明了.
若是tcpdump 的-v选项(详细打印选项) 被设置, 附加的信息将被显示. 好比:
sushi.1372a > wrl.nfs:
148 read fh 21,11/12.195 8192 bytes @ 24576
wrl.nfs > sushi.1372a:
reply ok 1472 read REG 100664 ids 417/0 sz 29388
(-v 选项通常还会打印出IP头部的TTL, ID, length, 以及fragmentation 域, 但在此例中, 都略过了(nt: 可理解为,简洁起见, 作了删减))
在第一行, sushi 请求wrl 从文件 21,11/12.195(nt: 格式在上面有描述)中, 自偏移24576字节处开始, 读取8192字节数据.
Wrl 回应读取成功; 因为第二行只是回应请求的开头片断, 因此只包含1472字节(其余的数据将在接着的reply片断中到来, 但这些数据包不会再有NFS
头, 甚至UDP头信息也为空(nt: 源和目的应该要有), 这将致使这些片断不能知足过滤条件, 从而没有被打印). -v 选项除了显示文件数据信息, 还会显示
附加显示文件属性信息: file type(文件类型, ”REG” 表示普通文件), file mode(文件存取模式, 8进制表示的), uid 和gid(nt: 文件属主和
组属主), file size (文件大小).
若是-v 标志被屡次重复给出(nt: 如-vv), tcpdump会显示更加详细的信息.
必需要注意的是, NFS 请求包中数据比较多, 若是tcpdump 的snaplen(nt: 抓取长度) 取过短将不能显示其详细信息. 可以使用
‘-s 192′来增长snaplen, 这可用以监测NFS应用的网络负载(nt: traffic).
NFS 的回应包并不严格的紧随以前相应的请求包(nt: RPC operation). 从而, tcpdump 会跟踪最近收到的一系列请求包, 再经过其
交换序号(nt: transaction ID)与相应请求包相匹配. 这可能产生一个问题, 若是回应包来得太迟, 超出tcpdump 对相应请求包的跟踪范围,
该回应包将不能被分析.
AFS(nt: Andrew 文件系统, Transarc , 未知, 需补充)请求和回应有以下的答应
src.sport > dst.dport: rx packet-type
src.sport > dst.dport: rx packet-type service call call-name args
src.sport > dst.dport: rx packet-type service reply call-name args
elvis.7001 > pike.afsfs:
rx data fs call rename old fid 536876964/1/1 “.newsrc.new”
new fid 536876964/1/1 “.newsrc”
pike.afsfs > elvis.7001: rx data fs reply rename
在第一行, 主机elvis 向pike 发送了一个RX数据包.
这是一个对于文件服务的请求数据包(nt: RX data packet, 发送数据包 , 可理解为发送包过去, 从而请求对方的服务), 这也是一个RPC
调用的开始(nt: RPC, remote procedure call). 此RPC 请求pike 执行rename(nt: 重命名) 操做, 并指定了相关的参数:
原目录描述符为536876964/1/1, 原文件名为 ‘.newsrc.new’, 新目录描述符为536876964/1/1, 新文件名为 ‘.newsrc’.
主机pike 对此rename操做的RPC请求做了回应(回应表示rename操做成功, 由于回应的是包含数据内容的包而不是异常包).
通常来讲, 全部的’AFS RPC’请求被显示时, 会被冠以一个名字(nt: 即decode, 解码), 这个名字每每就是RPC请求的操做名.
而且, 这些RPC请求的部分参数在显示时, 也会被冠以一个名字(nt | rt: 即decode, 解码, 通常来讲也是取名也很直接, 好比,
一个interesting 参数, 显示的时候就会直接是’interesting’, 含义拗口, 需再翻).
这种显示格式的设计初衷为’一看就懂’, 但对于不熟悉AFS 和 RX 工做原理的人可能不是很
有用(nt: 仍是不用管, 书面吓吓你的, 往下看就行).
若是 -v(详细)标志被重复给出(nt: 如-vv), tcpdump 会打印出确认包(nt: 可理解为, 与应答包有区别的包)以及附加头部信息
(nt: 可理解为, 全部包, 而不只仅是确认包的附加头部信息), 好比, RX call ID(请求包中’请求调用’的ID),
call number(‘请求调用’的编号), sequence number(nt: 包顺序号),
serial number(nt | rt: 可理解为与包中数据相关的另外一个顺信号, 具体含义需补充), 请求包的标识. (nt: 接下来一段为重复描述,
因此略去了), 此外确认包中的MTU协商信息也会被打印出来(nt: 确认包为相对于请求包的确认包, Maximum Transmission Unit, 最大传输单元).
若是 -v 选项被重复了三次(nt: 如-vvv), 那么AFS应用类型数据包的’安全索引’(‘security index’)以及’服务索引’(‘service id’)将会
被打印.
对于表示异常的数据包(nt: abort packet, 可理解为, 此包就是用来通知接受者某种异常已发生), tcpdump 会打印出错误号(error codes).
但对于Ubik beacon packets(nt: Ubik 灯塔指示包, Ubik可理解为特殊的通讯协议, beacon packets, 灯塔数据包, 可理解为指明通讯中
关键信息的一些数据包), 错误号不会被打印, 由于对于Ubik 协议, 异常数据包不是表示错误, 相反倒是表示一种确定应答(nt: 即, yes vote).
AFS 请求数据量大, 参数也多, 因此要求tcpdump的 snaplen 比较大, 通常可经过启动tcpdump时设置选项’-s 256′ 来增大snaplen, 以
监测AFS 应用通讯负载.
AFS 回应包并不显示标识RPC 属于何种远程调用. 从而, tcpdump 会跟踪最近一段时间内的请求包, 并经过call number(调用编号), service ID
(服务索引) 来匹配收到的回应包. 若是回应包不是针对最近一段时间内的请求包, tcpdump将没法解析该包.
(nt | rt: DDP in UDP可理解为, DDP, The AppleTalk Data Delivery Protocol,
至关于支持KIP AppleTalk协议栈的网络层协议, 而DDP 自己又是经过UDP来传输的,
即在UDP 上实现的用于其余网络的网络层,KIP AppleTalk是苹果公司开发的整套网络协议栈).
AppleTalk DDP 数据包被封装在UDP数据包中, 其解封装(nt: 至关于解码)和相应信息的转储也遵循DDP 包规则.
(nt:encapsulate, 封装, 至关于编码, de-encapsulate, 解封装, 至关于解码, dump, 转储, 一般就是指对其信息进行打印).
/etc/atalk.names 文件中包含了AppleTalk 网络和节点的数字标识到名称的对应关系. 其文件格式一般以下所示:
number name
1.254 ether
16.1 icsd-net
1.254.110 ace
头两行表示有两个AppleTalk 网络. 第三行给出了特定网络上的主机(一个主机会用3个字节来标识,
而一个网络的标识一般只有两个字节, 这也是二者标识的主要区别)(nt: 1.254.110 可理解为ether网络上的ace主机).
标识与其对应的名字之间必需要用空白分开. 除了以上内容, /etc/atalk.names中还包含空行以及注释行(以’#'开始的行).
AppleTalk 完整网络地址将以以下格式显示:
net.host.port
如下为一段具体显示:
144.1.209.2 > icsd-net.112.220
office.2 > icsd-net.112.220
jssmag.149.235 > icsd-net.2
(若是/etc/atalk.names 文件不存在, 或者没有相应AppleTalk 主机/网络的条目, 数据包的网络地址将以数字形式显示).
在第一行中, 网络144.1上的节点209经过2端口,向网络icsd-net上监听在220端口的112节点发送了一个NBP应用数据包
(nt | rt: NBP, name binding protocol, 名称绑定协议, 从数据来看, NBP服务器会在端口2提供此服务.
‘DDP port 2′ 可理解为’DDP 对应传输层的端口2′, DDP自己没有端口的概念, 这点未肯定, 需补充).
第二行与第一行相似, 只是源的所有地址可用’office’进行标识.
第三行表示: jssmag网络上的149节点经过235向icsd-net网络上的全部节点的2端口(NBP端口)发送了数据包.(须要注意的是,
在AppleTalk 网络中若是地址中没有节点, 则表示广播地址, 从而节点标识和网络标识最好在/etc/atalk.names有所区别.
nt: 不然一个标识x.port 没法肯定x是指一个网络上全部主机的port口仍是指定主机x的port口).
tcpdump 可解析NBP (名称绑定协议) and ATP (AppleTalk传输协议)数据包, 对于其余应用层的协议, 只会打印出相应协议名字(
若是此协议没有注册一个通用名字, 只会打印其协议号)以及数据包的大小.
NBP 数据包会按照以下格式显示:
icsd-net.112.220 > jssmag.2: nbp-lkup 190: “=:LaserWriter@*”
jssmag.209.2 > icsd-net.112.220: nbp-reply 190: “RM1140:LaserWriter@*” 250
techpit.2 > icsd-net.112.220: nbp-reply 190: “techpit:LaserWriter@*” 186
第一行表示: 网络icsd-net 中的节点112 经过220端口向网络jssmag 中全部节点的端口2发送了对’LaserWriter’的名称查询请求(nt:
此处名称可理解为一个资源的名称, 好比打印机). 此查询请求的序列号为190.
第二行表示: 网络jssmag 中的节点209 经过2端口向icsd-net.112节点的端口220进行了回应: 我有’LaserWriter’资源, 其资源名称
为’RM1140′, 而且在端口250上提供改资源的服务. 此回应的序列号为190, 对应以前查询的序列号.
第三行也是对第一行请求的回应: 节点techpit 经过2端口向icsd-net.112节点的端口220进行了回应:我有’LaserWriter’资源, 其资源名称
为’techpit’, 而且在端口186上提供改资源的服务. 此回应的序列号为190, 对应以前查询的序列号.
ATP 数据包的显示格式以下:
jssmag.209.165 > helios.132: atp-req 12266 0xae030001
helios.132 > jssmag.209.165: atp-resp 12266:0 (512) 0xae040000
helios.132 > jssmag.209.165: atp-resp 12266:1 (512) 0xae040000
helios.132 > jssmag.209.165: atp-resp 12266:2 (512) 0xae040000
helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000
helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000
helios.132 > jssmag.209.165: atp-resp 12266:6 (512) 0xae040000
helios.132 > jssmag.209.165: atp-resp*12266:7 (512) 0xae040000
jssmag.209.165 > helios.132: atp-req 12266 0xae030001
helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000
helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000
jssmag.209.165 > helios.132: atp-rel 12266 0xae030001
jssmag.209.133 > helios.132: atp-req* 12267 0xae030002
第一行表示节点 Jssmag.209 向节点helios 发送了一个会话编号为12266的请求包, 请求helios
回应8个数据包(这8个数据包的顺序号为0-7(nt: 顺序号与会话编号不一样, 后者为一次完整传输的编号,
前者为该传输中每一个数据包的编号. transaction, 会话, 一般也被叫作传输)). 行尾的16进制数字表示
该请求包中’userdata’域的值(nt: 从下文来看, 这并无把全部用户数据都打印出来 ).
Helios 回应了8个512字节的数据包. 跟在会话编号(nt: 12266)后的数字表示该数据包在该会话中的顺序号.
括号中的数字表示该数据包中数据的大小, 这不包括atp 的头部. 在顺序号为7数据包(第8行)外带了一个’*'号,
表示该数据包的EOM 标志被设置了.(nt: EOM, End Of Media, 可理解为, 表示一次会话的数据回应完毕).
接下来的第9行表示, Jssmag.209 又向helios 提出了请求: 顺序号为3以及5的数据包请从新传送. Helios 收到这个
请求后从新发送了这个两个数据包, jssmag.209 再次收到这两个数据包以后, 主动结束(release)了此会话.
在最后一行, jssmag.209 向helios 发送了开始下一次会话的请求包. 请求包中的’*'表示该包的XO 标志没有被设置.
(nt: XO, exactly once, 可理解为在该会话中, 数据包在接受方只被精确地处理一次, 就算对方重复传送了该数据包,
接收方也只会处理一次, 这须要用到特别设计的数据包接收和处理机制).
(nt: 指把一个IP数据包分红多个IP数据包)
碎片IP数据包(nt: 即一个大的IP数据包破碎后生成的小IP数据包)有以下两种显示格式.
(frag id:size@offset+)
(frag id:size@offset)
(第一种格式表示, 此碎片以后还有后续碎片. 第二种格式表示, 此碎片为最后一个碎片.)
id 表示破碎编号(nt: 从下文来看, 会为每一个要破碎的大IP包分配一个破碎编号, 以便区分每一个小碎片是否由同一数据包破碎而来).
size 表示此碎片的大小 , 不包含碎片头部数据. offset表示此碎片所含数据在原始整个IP包中的偏移((nt: 从下文来看,
一个IP数据包是做为一个总体被破碎的, 包括头和数据, 而不仅是数据被分割).
每一个碎片都会使tcpdump产生相应的输出打印. 第一个碎片包含了高层协议的头数据(nt:从下文来看, 被破碎IP数据包中相应tcp头以及
IP头都放在了第一个碎片中 ), 从而tcpdump会针对第一个碎片显示这些信息, 并接着显示此碎片自己的信息. 其后的一些碎片并不包含
高层协议头信息, 从而只会在显示源和目的以后显示碎片自己的信息. 如下有一个例子: 这是一个从arizona.edu 到lbl-rtsg.arpa
途经CSNET网络(nt: CSNET connection 可理解为创建在CSNET 网络上的链接)的ftp应用通讯片断:
arizona.ftp-data > rtsg.1170: . 1024:1332(308) ack 1 win 4096 (frag 595a:328@0+)
arizona > rtsg: (frag 595a:204@328)
rtsg.1170 > arizona.ftp-data: . ack 1536 win 2560
有几点值得注意:
第一, 第二行的打印中, 地址后面没有端口号.
这是由于TCP协议信息都放到了第一个碎片中, 当显示第二个碎片时, 咱们没法知道此碎片所对应TCP包的顺序号.
第二, 从第一行的信息中, 能够发现arizona须要向rtsg发送308字节的用户数据, 而事实是, 相应IP包经破碎后会总共产生512字节
数据(第一个碎片包含308字节的数据, 第二个碎片包含204个字节的数据, 这超过了308字节). 若是你在查找数据包的顺序号空间中的
一些空洞(nt: hole,空洞, 指数据包之间的顺序号没有上下衔接上), 512这个数据就足够使你迷茫一阵(nt: 其实只要关注308就行,
没必要关注破碎后的数据总量).
一个数据包(nt | rt: 指IP数据包)若是带有非IP破碎标志, 则显示时会在最后显示’(DF)’.(nt: 意味着此IP包没有被破碎过).
tcpdump的全部输出打印行中都会默认包含时间戳信息.
时间戳信息的显示格式以下
hh:mm:ss.frac (nt: 小时:分钟:秒.(nt: frac未知, 需补充))
此时间戳的精度与内核时间精度一致, 反映的是内核第一次看到对应数据包的时间(nt: saw, 便可对该数据包进行操做).
而数据包从物理线路传递到内核的时间, 以及内核花费在此包上的中断处理时间都没有算进来.
tcpdump采用命令行方式,它的命令格式为:
1
|
tcpdump [ -AdDeflLnNOpqRStuUvxX ] [ -c count ] [ -C file_size ] [ -F file ] [ -i interface ] [ -m module ] [ -M secret ] [ -r file ] [ -s snaplen ] [ -T type ] [ -w file ] [ -W filecount ] [ -E spi@ipaddr algo:secret,... ] [ -y datalinktype ] [ -Z user ] [ expression ]
|
1
|
-A 以ASCII码方式显示每个数据包(不会显示数据包中链路层头部信息). 在抓取包含网页数据的数据包时, 可方便查看数据(nt: 即Handy for capturing web pages).-c count tcpdump将在接受到count个数据包后退出.-C file-size (nt: 此选项用于配合-w file 选项使用) 该选项使得tcpdump 在把原始数据包直接保存到文件中以前, 检查此文件大小是否超过file-size. 若是超过了, 将关闭此文件,另创一个文件继续用于原始数据包的记录. 新建立的文件名与-w 选项指定的文件名一致, 但文件名后多了一个数字.该数字会从1开始随着新建立文件的增多而增长. file-size的单位是百万字节(nt: 这里指1,000,000个字节,并不是1,048,576个字节, 后者是以1024字节为1k, 1024k字节为1M计算所得, 即1M=1024 * 1024 = 1,048,576)-d 以容易阅读的形式,在标准输出上打印出编排过的包匹配码, 随后tcpdump中止.(nt | rt: human readable, 容易阅读的,一般是指以ascii码来打印一些信息. compiled, 编排过的. packet-matching code, 包匹配码,含义未知, 需补充)-dd 以C语言的形式打印出包匹配码.-ddd 以十进制数的形式打印出包匹配码(会在包匹配码以前有一个附加的'count'前缀).-D 打印系统中全部tcpdump能够在其上进行抓包的网络接口. 每个接口会打印出数字编号, 相应的接口名字, 以及可能的一个网络接口描述. 其中网络接口名字和数字编号能够用在tcpdump 的-i flag 选项(nt: 把名字或数字代替flag), 来指定要在其上抓包的网络接口. 此选项在不支持接口列表命令的系统上颇有用(nt: 好比, Windows 系统, 或缺少 ifconfig -a 的UNIX系统); 接口的数字编号在windows 2000 或其后的系统中颇有用, 由于这些系统上的接口名字比较复杂, 而不易使用. 若是tcpdump编译时所依赖的libpcap库太老,-D 选项不会被支持, 由于其中缺少 pcap_findalldevs()函数.-e 每行的打印输出中将包括数据包的数据链路层头部信息-E spi@ipaddr algo:secret,... 可经过spi@ipaddr algo:secret 来解密IPsec ESP包(nt | rt:IPsec Encapsulating Security Payload,IPsec 封装安全负载, IPsec可理解为, 一整套对ip数据包的加密协议, ESP 为整个IP 数据包或其中上层协议部分被加密后的数据,前者的工做模式称为隧道模式; 后者的工做模式称为传输模式 . 工做原理, 另需补充). 须要注意的是, 在终端启动tcpdump 时, 能够为IPv4 ESP packets 设置密钥(secret). 可用于加密的算法包括des-cbc, 3des-cbc, blowfish-cbc, rc3-cbc, cast128-cbc, 或者没有(none).默认的是des-cbc(nt: des, Data Encryption Standard, 数据加密标准, 加密算法未知, 另需补充).secret 为用于ESP 的密钥, 使用ASCII 字符串方式表达. 若是以 0x 开头, 该密钥将以16进制方式读入. 该选项中ESP 的定义遵循RFC2406, 而不是 RFC1827. 而且, 此选项只是用来调试的, 不推荐以真实密钥(secret)来使用该选项, 由于这样不安全: 在命令行中输入的secret 能够被其余人经过ps 等命令查看到. 除了以上的语法格式(nt: 指spi@ipaddr algo:secret), 还能够在后面添加一个语法输入文件名字供tcpdump 使用(nt:即把spi@ipaddr algo:secret,... 中...换成一个语法文件名). 此文件在接受到第一个ESP 包时会打开此文件, 因此最好此时把赋予tcpdump 的一些特权取消(nt: 可理解为, 这样防范以后, 当该文件为恶意编写时,不至于形成过大损害).-f 显示外部的IPv4 地址时(nt: foreign IPv4 addresses, 可理解为, 非本机ip地址), 采用数字方式而不是名字.(此选项是用来对付Sun公司的NIS服务器的缺陷(nt: NIS, 网络信息服务, tcpdump 显示外部地址的名字时会用到她提供的名称服务): 此NIS服务器在查询非本地地址名字时,经常会陷入无尽的查询循环). 因为对外部(foreign)IPv4地址的测试须要用到本地网络接口(nt: tcpdump 抓包时用到的接口)及其IPv4 地址和网络掩码. 若是此地址或网络掩码不可用, 或者此接口根本就没有设置相应网络地址和网络掩码(nt: linux 下的 'any' 网络接口就不须要设置地址和掩码, 不过此'any'接口能够收到系统中全部接口的数据包), 该选项不能正常工做.-F file 使用file 文件做为过滤条件表达式的输入, 此时命令行上的输入将被忽略.-i interface 指定tcpdump 须要监听的接口. 若是没有指定, tcpdump 会从系统接口列表中搜寻编号最小的已配置好的接口(不包括 loopback 接口).一但找到第一个符合条件的接口, 搜寻立刻结束. 在采用2.2版本或以后版本内核的Linux 操做系统上, 'any' 这个虚拟网络接口可被用来接收全部网络接口上的数据包(nt: 这会包括目的是该网络接口的, 也包括目的不是该网络接口的). 须要注意的是若是真实网络接口不能工做在'混杂'模式(promiscuous)下,则没法在'any'这个虚拟的网络接口上抓取其数据包. 若是 -D 标志被指定, tcpdump会打印系统中的接口编号,而该编号就可用于此处的interface 参数.-l 对标准输出进行行缓冲(nt: 使标准输出设备遇到一个换行符就立刻把这行的内容打印出来).在须要同时观察抓包打印以及保存抓包记录的时候颇有用. 好比, 可经过如下命令组合来达到此目的: ``tcpdump -l | tee dat'' 或者 ``tcpdump -l > dat
|
该表达式用于决定哪些数据包将被打印. 若是不给定条件表达式, 网络上全部被捕获的包都会被打印,不然, 只有知足条件表达式的数据包被打印.(nt: all packets, 可理解为, 全部被指定接口捕获的数据包).
表达式由一个或多个’表达元’组成(nt: primitive, 表达元, 可理解为组成表达式的基本元素). 一个表达元一般由一个或多个修饰符(qualifiers)后跟一个名字或数字表示的id组成(nt: 即, ‘qualifiers id’).有三种不一样类型的修饰符:type, dir以及 proto.
1
|
type 修饰符指定id 所表明的对象类型, id能够是名字也能够是数字. 可选的对象类型有: host, net, port 以及portrange(nt: host 代表id表示主机, net 代表id是网络, port 代表id是端而portrange 代表id 是一个端口范围). 如, 'host foo', 'net 128.3', 'port 20', 'portrange 6000-6008'(nt: 分别表示主机 foo,网络 128.3, 端口 20, 端口范围 6000-6008). 若是不指定type 修饰符, id默认的修饰符为host.dir 修饰符描述id 所对应的传输方向, 即发往id 仍是从id 接收(nt: 而id 到底指什么须要看其前面的type 修饰符).可取的方向为: src, dst, src 或 dst, src而且dst.(nt:分别表示, id是传输源, id是传输目的, id是传输源或者传输目的, id是传输源而且是传输目的). 例如, 'src foo','dst net 128.3', 'src or dst port ftp-data'.(nt: 分别表示符合条件的数据包中, 源主机是foo, 目的网络是128.3, 源或目的端口为 ftp-data).若是不指定dir修饰符, id 默认的修饰符为src 或 dst.对于链路层的协议,好比SLIP(nt: Serial Line InternetProtocol, 串联线路网际网络协议), 以及linux下指定'any' 设备, 并指定'cooked'(nt | rt: cooked 含义未知, 需补充) 抓取类型, 或其余设备类型,能够用'inbound' 和 'outbount' 修饰符来指定想要的传输方向.proto 修饰符描述id 所属的协议. 可选的协议有: ether, fddi, tr, wlan, ip, ip6, arp, rarp, decnet, tcp以及 upd.(nt | rt: ether, fddi, tr, 具体含义未知, 需补充. 可理解为物理以太网传输协议, 光纤分布数据网传输协议,以及用于路由跟踪的协议. wlan, 无线局域网协议; ip,ip6 即一般的TCP/IP协议栈中所使用的ipv4以及ipv6网络层协议;arp, rarp 即地址解析协议,反向地址解析协议; decnet, Digital Equipment Corporation开发的, 最先用于PDP-11 机器互联的网络协议; tcp and udp, 即一般TCP/IP协议栈中的两个传输层协议). 例如, `ether src foo', `arp net 128.3', `tcp port 21', `udp portrange 7000-7009'分别表示 '从以太网地址foo 来的数据包','发往或来自128.3网络的arp协议数据包', '发送或接收端口为21的tcp协议数据包', '发送或接收端口范围为7000-7009的udp协议数据包'. 若是不指定proto 修饰符, 则默认为与相应type匹配的修饰符. 例如, 'src foo' 含义是 '(ip or arp or rarp) src foo' (nt: 即, 来自主机foo的ip/arp/rarp协议数据包, 默认type为host),`net bar' 含义是`(ip or arp or rarp) net bar'(nt: 即, 来自或发往bar网络的ip/arp/rarp协议数据包),`port 53' 含义是 `(tcp or udp) port 53'(nt: 即, 发送或接收端口为53的tcp/udp协议数据包).(nt: 因为tcpdump 直接经过数据链路层的 BSD 数据包过滤器或 DLPI(datalink provider interface, 数据链层提供者接口)来直接得到网络数据包, 其可抓取的数据包可涵盖上层的各类协议, 包括arp, rarp, icmp(因特网控制报文协议),ip, ip6, tcp, udp, sctp(流控制传输协议). 对于修饰符后跟id 的格式,可理解为, type id 是对包最基本的过滤条件: 即对包相关的主机, 网络, 端口的限制;dir 表示对包的传送方向的限制; proto表示对包相关的协议限制) 'fddi'(nt: Fiber Distributed Data Interface) 实际上与'ether' 含义同样: tcpdump 会把他们看成一种''指定网络接口上的数据链路层协议''. 如同ehter网(以太网), FDDI 的头部一般也会有源, 目的, 以及包类型, 从而能够像ether网数据包同样对这些域进行过滤. 此外, FDDI 头部还有其余的域, 但不能被放到表达式中用来过滤 一样, 'tr' 和 'wlan' 也和 'ether' 含义一致, 上一段对fddi 的描述一样适用于tr(Token Ring) 和wlan(802.11 wireless LAN)的头部. 对于802.11 协议数据包的头部, 目的域称为DA, 源域称为 SA;而其中的 BSSID, RA, TA 域(nt | rt: 具体含义需补充)不会被检测(nt: 不能被用于包过虑表达式中).
|
除以上所描述的表达元(‘primitive’), 还有其余形式的表达元, 而且与上述表达元格式不一样. 好比: gateway, broadcast, less, greater以及算术表达式(nt: 其中每个都算一种新的表达元). 下面将会对这些表达元进行说明.
表达元之间还能够经过关键字and, or 以及 not 进行链接, 从而可组成比较复杂的条件表达式. 好比,`host foo and not port ftp and not port ftp-data’(nt: 其过滤条件可理解为, 数据包的主机为foo,而且端口不是ftp(端口21) 和ftp-data(端口20, 经常使用端口和名字的对应可在linux 系统中的/etc/service 文件中找到)).
为了表示方便, 一样的修饰符能够被省略, 如’tcp dst port ftp or ftp-data or domain’ 与如下的表达式含义相同’tcp dst port ftp or tcp dst port ftp-data or tcp dst port domain’.(nt: 其过滤条件可理解为,包的协议为tcp, 目的端口为ftp 或 ftp-data 或 domain(端口53) ).
借助括号以及相应操做符,可把表达元组合在一块儿使用(因为括号是shell的特殊字符, 因此在shell脚本或终端中使用时必须对括号进行转义, 即’(‘ 与’)'须要分别表达成’(‘ 与 ‘)’).
有效的操做符有:
1
|
否认操做 (`!' 或 `not') 与操做(`
|
否认操做符的优先级别最高. 与操做和或操做优先级别相同, 而且两者的结合顺序是从左到右. 要注意的是, 表达’与操做’时,
须要显式写出’and’操做符, 而不仅是把先后表达元并列放置(nt: 两者中间的’and’ 操做符不可省略).
若是一个标识符前没有关键字, 则表达式的解析过程当中最近用过的关键字(每每也是从左往右距离标识符最近的关键字)将被使用.好比,
not host vs and ace
是如下表达的精简:
not host vs and host ace
而不是not (host vs or ace).(nt: 前二者表示, 所需数据包不是来自或发往host vs, 而是来自或发往ace.然后者表示数据包只要不是来自或发往vs或ac都符合要求)
整个条件表达式能够被看成一个单独的字符串参数也能够被看成空格分割的多个参数传入tcpdump, 后者更方便些. 一般, 若是表达式中包含元字符(nt: 如正则表达式中的’*', ‘.’以及shell中的’(‘等字符), 最好仍是使用单独字符串的方式传入. 这时,整个表达式须要被单引号括起来. 多参数的传入方式中, 全部参数最终仍是被空格串联在一块儿, 做为一个字符串被解析.
(nt: True 在如下的描述中含义为: 相应条件表达式中只含有如下所列的一个特定表达元, 此时表达式为真, 即条件获得知足)
dst host host
若是IPv4/v6 数据包的目的域是host, 则与此对应的条件表达式为真.host 能够是一个ip地址, 也能够是一个主机名.
src host host
若是IPv4/v6 数据包的源域是host, 则与此对应的条件表达式为真.
host 能够是一个ip地址, 也能够是一个主机名.
host host
若是IPv4/v6数据包的源或目的地址是 host, 则与此对应的条件表达式为真.以上的几个host 表达式以前能够添加如下关键字:ip, arp, rarp, 以及 ip6.好比:
ip host host
也能够表达为:
ether proto ip and host host(nt: 这种表达方式在下面有说明, 其中ip以前须要有来转义,由于ip 对tcpdump 来讲已是一个关键字了.)
若是host 是一个拥有多个IP 的主机, 那么任何一个地址都会用于包的匹配(nt: 即发向host 的数据包的目的地址能够是这几个IP中的任何一个, 从host 接收的数据包的源地址也能够是这几个IP中的任何一个).
ether dst ehost
若是数据包(nt: 指tcpdump 可抓取的数据包, 包括ip 数据包, tcp数据包)的以太网目标地址是ehost,则与此对应的条件表达式为真. Ehost 能够是/etc/ethers 文件中的名字或一个数字地址(nt: 可经过 man ethers 看到对/etc/ethers 文件的描述, 样例中用的是数字地址)
ether src ehost
若是数据包的以太网源地址是ehost, 则与此对应的条件表达式为真.
ether host ehost
若是数据包的以太网源地址或目标地址是ehost, 则与此对应的条件表达式为真.
gateway host
若是数据包的网关地址是host, 则与此对应的条件表达式为真. 须要注意的是, 这里的网关地址是指以太网地址, 而不是IP 地址(nt | rt: I.e., 例如, 可理解为’注意’.the Ethernet source or destination address, 以太网源和目标地址, 可理解为, 指代上句中的’网关地址’ ).host 必须是名字而不是数字, 而且必须在机器的’主机名-ip地址’以及’主机名-以太地址’两大映射关系中 有其条目(前一映射关系可经过/etc/hosts文件, DNS 或 NIS获得, 然后一映射关系可经过/etc/ethers 文件获得. nt: /etc/ethers并不必定存在 , 可经过man ethers 看到其数据格式, 如何建立该文件, 未知,需补充).也就是说host 的含义是 ether host ehost 而不是 host host, 而且ehost必须是名字而不是数字.
目前, 该选项在支持IPv6地址格式的配置环境中不起做用(nt: configuration, 配置环境, 可理解为,通讯双方的网络配置).
dst net net
若是数据包的目标地址(IPv4或IPv6格式)的网络号字段为 net, 则与此对应的条件表达式为真.
net 能够是从网络数据库文件/etc/networks 中的名字, 也能够是一个数字形式的网络编号.
一个数字IPv4 网络编号将以点分四元组(好比, 192.168.1.0), 或点分三元组(好比, 192.168.1 ), 或点分二元组(好比, 172.16), 或单一单元组(好比, 10)来表达;
对应于这四种状况的网络掩码分别是:四元组:255.255.255.255(这也意味着对net 的匹配如同对主机地址(host)的匹配:地址的四个部分都用到了),三元组:255.255.255.0, 二元组: 255.255.0.0, 一元组:255.0.0.0.
对于IPv6 的地址格式, 网络编号必须所有写出来(8个部分必须所有写出来); 相应网络掩码为:
ff:ff:ff:ff:ff:ff:ff:ff, 因此IPv6 的网络匹配是真正的’host’方式的匹配(nt | rt | rc:地址的8个部分都会用到,是否不属于网络的字节填写0, 需接下来补充), 但同时须要一个网络掩码长度参数来具体指定前面多少字节为网络掩码(nt: 可经过下面的net net/len 来指定)
src net net
若是数据包的源地址(IPv4或IPv6格式)的网络号字段为 net, 则与此对应的条件表达式为真.
net net
若是数据包的源或目的地址(IPv4或IPv6格式)的网络号字段为 net, 则与此对应的条件表达式为真.
net net mask netmask
若是数据包的源或目的地址(IPv4或IPv6格式)的网络掩码与netmask 匹配, 则与此对应的条件表达式为真.此选项以前还能够配合src和dst来匹配源网络地址或目标网络地址(nt: 好比 src net net mask 255.255.255.0).该选项对于ipv6 网络地址无效.
net net/len
若是数据包的源或目的地址(IPv4或IPv6格式)的网络编号字段的比特数与len相同, 则与此对应的条件表达式为真.此选项以前还能够配合src和dst来匹配源网络地址或目标网络地址(nt | rt | tt: src net net/24, 表示须要匹配源地址的网络编号有24位的数据包).
dst port port
若是数据包(包括ip/tcp, ip/udp, ip6/tcp or ip6/udp协议)的目的端口为port, 则与此对应的条件表达式为真.port 能够是一个数字也能够是一个名字(相应名字能够在/etc/services 中找到该名字, 也能够经过man tcp 和man udp来获得相关描述信息 ). 若是使用名字, 则该名字对应的端口号和相应使用的协议都会被检查. 若是只是使用一个数字端口号,则只有相应端口号被检查(好比, dst port 513 将会使tcpdump抓取tcp协议的login 服务和udp协议的who 服务数据包, 而port domain 将会使tcpdump 抓取tcp协议的domain 服务数据包, 以及udp 协议的domain 数据包)(nt | rt: ambiguous name is used 不可理解, 需补充).
src port port
若是数据包的源端口为port, 则与此对应的条件表达式为真.
port port
若是数据包的源或目的端口为port, 则与此对应的条件表达式为真.
dst portrange port1-port2
若是数据包(包括ip/tcp, ip/udp, ip6/tcp or ip6/udp协议)的目的端口属于port1到port2这个端口范围(包括port1, port2), 则与此对应的条件表达式为真. tcpdump 对port1 和port2 解析与对port 的解析一致(nt:在dst port port 选项的描述中有说明).
src portrange port1-port2
若是数据包的源端口属于port1到port2这个端口范围(包括 port1, port2), 则与此对应的条件表达式为真.
portrange port1-port2
若是数据包的源端口或目的端口属于port1到port2这个端口范围(包括 port1, port2), 则与此对应的条件表达式为真.
以上关于port 的选项均可以在其前面添加关键字:tcp 或者udp, 好比:
tcp src port port
这将使tcpdump 只抓取源端口是port 的tcp数据包.
less length
若是数据包的长度比length 小或等于length, 则与此对应的条件表达式为真. 这与’len ‘ 的含义一致.
greater length
若是数据包的长度比length 大或等于length, 则与此对应的条件表达式为真. 这与’len >= length’ 的含义一致.
ip proto protocol
若是数据包为ipv4数据包而且其协议类型为protocol, 则与此对应的条件表达式为真.
Protocol 能够是一个数字也能够是名字, 好比:icmp6, igmp, igrp(nt: Interior Gateway Routing Protocol,内部网关路由协议), pim(Protocol Independent Multicast, 独立组播协议, 应用于组播路由器),ah, esp(nt: ah, 认证头, esp 安全负载封装, 这二者会用在IP包的安全传输机制中 ), vrrp(Virtual Router Redundancy Protocol, 虚拟路由器冗余协议), udp, or tcp. 因为tcp , udp 以及icmp是tcpdump 的关键字,因此在这些协议名字以前必需要用来进行转义(若是在C-shell 中须要用\来进行转义). 注意此表达元不会把数据包中协议头链中全部协议头内容所有打印出来(nt: 实际上只会打印指定协议的一些头部信息, 好比能够用tcpdump -i eth0 ‘ip proto tcp and host 192.168.3.144′, 则只打印主机192.168.3.144 发出或接收的数据包中tcp 协议头所包含的信息)
ip6 proto protocol
若是数据包为ipv6数据包而且其协议类型为protocol, 则与此对应的条件表达式为真.
注意此表达元不会把数据包中协议头链中全部协议头内容所有打印出来
ip6 protochain protocol
若是数据包为ipv6数据包而且其协议链中包含类型为protocol协议头, 则与此对应的条件表达式为真. 好比,
ip6 protochain 6
将匹配其协议头链中拥有TCP 协议头的IPv6数据包.此数据包的IPv6头和TCP头之间可能还会包含验证头, 路由头, 或者逐跳寻径选项头.
由此所触发的相应BPF(Berkeley Packets Filter, 可理解为, 在数据链路层提供数据包过滤的一种机制)代码比较繁琐,而且BPF优化代码也未能照顾到此部分, 从而此选项所触发的包匹配可能会比较慢.
ip protochain protocol
与ip6 protochain protocol 含义相同, 但这用在IPv4数据包.
ether broadcast
若是数据包是以太网广播数据包, 则与此对应的条件表达式为真. ether 关键字是可选的.
ip broadcast
若是数据包是IPv4广播数据包, 则与此对应的条件表达式为真. 这将使tcpdump 检查广播地址是否符合全0和全1的一些约定,并查找网络接口的网络掩码(网络接口为当时在其上抓包的网络接口).
若是抓包所在网络接口的网络掩码不合法, 或者此接口根本就没有设置相应网络地址和网络, 亦或是在linux下的’any’网络接口上抓包(此’any’接口能够收到系统中不止一个接口的数据包(nt: 实际上, 可理解为系统中全部可用的接口)),网络掩码的检查不能正常进行.
ether multicast
若是数据包是一个以太网多点广播数据包(nt: 多点广播, 可理解为把消息同时传递给一组目的地址, 而不是网络中全部地址,后者为可称为广播(broadcast)), 则与此对应的条件表达式为真. 关键字ether 能够省略. 此选项的含义与如下条件表达式含义一致:`ether[0] & 1 != 0′(nt: 可理解为, 以太网数据包中第0个字节的最低位是1, 这意味这是一个多点广播数据包).
ip multicast
若是数据包是ipv4多点广播数据包, 则与此对应的条件表达式为真.
ip6 multicast
若是数据包是ipv6多点广播数据包, 则与此对应的条件表达式为真.
ether proto protocol
若是数据包属于如下以太协议类型, 则与此对应的条件表达式为真.
协议(protocol)字段, 能够是数字或如下所列出了名字: ip, ip6, arp, rarp, atalk(AppleTalk网络协议),aarp(nt: AppleTalk Address Resolution Protocol, AppleTalk网络的地址解析协议),decnet(nt: 一个由DEC公司所提供的网络协议栈), sca(nt: 未知, 需补充),lat(Local Area Transport, 区域传输协议, 由DEC公司开发的以太网主机互联协议),mopdl, moprc, iso(nt: 未知, 需补充), stp(Spanning tree protocol, 生成树协议, 可用于防止网络中产生连接循环),
ipx(nt: Internetwork Packet Exchange, Novell 网络中使用的网络层协议), 或者
netbeui(nt: NetBIOS Extended User Interface,可理解为, 网络基本输入输出系统接口扩展).
protocol字段能够是一个数字或如下协议名之一:ip, ip6, arp, rarp, atalk, aarp, decnet, sca, lat,mopdl, moprc, iso, stp, ipx, 或者netbeui. 必需要注意的是标识符也是关键字, 从而必须经过”来进行转义.
(SNAP:子网接入协议 (SubNetwork Access Protocol))
在光纤分布式数据网络接口(其表达元形式能够是’fddi protocol arp’), 令牌环网(其表达元形式能够是’tr protocol arp’),以及IEEE 802.11 无线局域网(其表达元形式能够是’wlan protocol arp’)中, protocol 标识符来自802.2 逻辑链路控制层头,在FDDI, Token Ring 或 802.1头中会包含此逻辑链路控制层头.
当以这些网络上的相应的协议标识为过滤条件时, tcpdump只是检查LLC头部中以0×000000为组成单元标识符(OUI, 0×000000
标识一个内部以太网)的一段’SNAP格式结构’中的protocol ID 域, 而不会管包中是否有一段OUI为0×000000的’SNAP格式
结构’(nt: SNAP, SubNetwork Access Protocol,子网接入协议 ). 如下例外:
iso tcpdump 会检查LLC头部中的DSAP域(Destination service Access Point, 目标服务接入点)和SSAP域(源服务接入点).(nt: iso 协议未知, 需补充)
stp 以及 netbeui
tcpdump 将会检查LLC 头部中的目标服务接入点(Destination service Access Point);
atalk
tcpdump 将会检查LLC 头部中以0×080007 为OUI标识的’SNAP格式结构’, 并会检查AppleTalk etype域.
(nt: AppleTalk etype 是否位于SNAP格式结构中, 未知, 需补充).
此外, 在以太网中, 对于ether proto protocol 选项, tcpdump 会为 protocol 所指定的协议检查以太网类型域(the Ethernet type field), 但如下这些协议除外:
iso, stp, and netbeui
tcpdump 将会检查802.3 物理帧以及LLC 头(这两种检查与FDDI, TR, 802.11网络中的相应检查一致);
(nt: 802.3, 理解为IEEE 802.3, 其为一系列IEEE 标准的集合. 此集合定义了有线以太网络中的物理层以及数据
链路层的媒体接入控制子层. stp 在上文已有描述)
atalk
tcpdump 将会检查以太网物理帧中的AppleTalk etype 域 , 同时也会检查数据包中LLC头部中的’SNAP格式结构’
(这两种检查与FDDI, TR, 802.11网络中的相应检查一致)
aarp tcpdump 将会检查AppleTalk ARP etype 域, 此域或存在于以太网物理帧中, 或存在于LLC(由802.2 所定义)的’SNAP格式结构’中, 当为后者时, 该’SNAP格式结构’的OUI标识为0×000000;
(nt: 802.2, 可理解为, IEEE802.2, 其中定义了逻辑链路控制层(LLC), 该层对应于OSI 网络模型中数据链路层的上层部分.
LLC 层为使用数据链路层的用户提供了一个统一的接口(一般用户是网络层). LLC层如下是媒体接入控制层(nt: MAC层,对应于数据链路层的下层部分).该层的实现以及工做方式会根据不一样物理传输媒介的不一样而有所区别(好比, 以太网, 令牌环网,光纤分布数据接口(nt: 实际可理解为一种光纤网络), 无线局域网(802.11), 等等.)
ipx tcpdump 将会检查物理以太帧中的IPX etype域, LLC头中的IPX DSAP域,无LLC头并对IPX进行了封装的802.3帧,以及LLC 头部’SNAP格式结构’中的IPX etype 域 (nt | rt: SNAP frame, 可理解为, LLC 头中的’SNAP格式结构’.该含义属初步理解阶段, 需补充).
decnet src host
若是数据包中DECNET源地址为host, 则与此对应的条件表达式为真.
(nt:decnet, 由Digital Equipment Corporation 开发, 最先用于PDP-11 机器互联的网络协议)
decnet dst host
若是数据包中DECNET目的地址为host, 则与此对应的条件表达式为真.
(nt: decnet 在上文已有说明)
decnet host host
若是数据包中DECNET目的地址或DECNET源地址为host, 则与此对应的条件表达式为真.
(nt: decnet 在上文已有说明)
ifname interface
若是数据包已被标记为从指定的网络接口中接收的, 则与此对应的条件表达式为真.
(此选项只适用于被OpenBSD中pf程序作过标记的包(nt: pf, packet filter, 可理解为OpenBSD中的防火墙程序))
on interface
与 ifname interface 含义一致.
rnr num
若是数据包已被标记为匹配PF的规则, 则与此对应的条件表达式为真.
(此选项只适用于被OpenBSD中pf程序作过标记的包(nt: pf, packet filter, 可理解为OpenBSD中的防火墙程序))
rulenum num
与 rulenum num 含义一致.
reason code
若是数据包已被标记为包含PF的匹配结果代码, 则与此对应的条件表达式为真.有效的结果代码有: match, bad-offset,fragment, short, normalize, 以及memory.
(此选项只适用于被OpenBSD中pf程序作过标记的包(nt: pf, packet filter, 可理解为OpenBSD中的防火墙程序))
rset name
若是数据包已被标记为匹配指定的规则集, 则与此对应的条件表达式为真.
(此选项只适用于被OpenBSD中pf程序作过标记的包(nt: pf, packet filter, 可理解为OpenBSD中的防火墙程序))
ruleset name
与 rset name 含义一致.
srnr num
若是数据包已被标记为匹配指定的规则集中的特定规则(nt: specified PF rule number, 特定规则编号, 即特定规则),则与此对应的条件表达式为真.(此选项只适用于被OpenBSD中pf程序作过标记的包(nt: pf, packet filter, 可理解为OpenBSD中的防火墙程序))
subrulenum num
与 srnr 含义一致.
action act
若是包被记录时PF会执行act指定的动做, 则与此对应的条件表达式为真. 有效的动做有: pass, block.
(此选项只适用于被OpenBSD中pf程序作过标记的包(nt: pf, packet filter, 可理解为OpenBSD中的防火墙程序))
ip, ip6, arp, rarp, atalk, aarp, decnet, iso, stp, ipx, netbeui
与如下表达元含义一致:
ether proto p
p是以上协议中的一个.
lat, moprc, mopdl
与如下表达元含义一致:
ether proto p
p是以上协议中的一个. 必需要注意的是tcpdump目前还不能分析这些协议.
vlan [vlan_id]
若是数据包为IEEE802.1Q VLAN 数据包, 则与此对应的条件表达式为真.
(nt: IEEE802.1Q VLAN, 即IEEE802.1Q 虚拟网络协议, 此协议用于不一样网络的之间的互联).
若是[vlan_id] 被指定, 则只有数据包含有指定的虚拟网络id(vlan_id), 则与此对应的条件表达式为真.
要注意的是, 对于VLAN数据包, 在表达式中遇到的第一个vlan关键字会改变表达式中接下来关键字所对应数据包中数据的开始位置(即解码偏移). 在VLAN网络体系中过滤数据包时, vlan [vlan_id]表达式能够被屡次使用. 关键字vlan每出现一次都会增长4字节过滤偏移(nt: 过滤偏移, 可理解为上面的解码偏移).
例如:
vlan 100 && vlan 200
表示: 过滤封装在VLAN100中的VLAN200网络上的数据包
再例如:
vlan && vlan 300 && ip
表示: 过滤封装在VLAN300 网络中的IPv4数据包, 而VLAN300网络又被更外层的VLAN封装
mpls [label_num]
若是数据包为MPLS数据包, 则与此对应的条件表达式为真.
(nt: MPLS, Multi-Protocol Label Switch, 多协议标签交换, 一种在开放的通讯网上利用标签引导数据传输的技术).
若是[label_num] 被指定, 则只有数据包含有指定的标签id(label_num), 则与此对应的条件表达式为真.
要注意的是, 对于内含MPLS信息的IP数据包(即MPLS数据包), 在表达式中遇到的第一个MPLS关键字会改变表达式中接下来关键字所对应数据包中数据的开始位置(即解码偏移). 在MPLS网络体系中过滤数据包时, mpls [label_num]表达式能够被屡次使用. 关键字mpls每出现一次都会增长4字节过滤偏移(nt: 过滤偏移, 可理解为上面的解码偏移).
例如:
mpls 100000 && mpls 1024
表示: 过滤外层标签为100000 而层标签为1024的数据包
再如:
mpls && mpls 1024 && host 192.9.200.1
表示: 过滤发往或来自192.9.200.1的数据包, 该数据包的内层标签为1024, 且拥有一个外层标签.
pppoed
若是数据包为PPP-over-Ethernet的服务器探寻数据包(nt: Discovery packet,其ethernet type 为0×8863),则与此对应的条件表达式为真.
(nt: PPP-over-Ethernet, 点对点以太网承载协议, 其点对点的链接创建分为Discovery阶段(地址发现) 和PPPoE 会话创建阶段 , discovery 数据包就是第一阶段发出来的包. ethernet type是以太帧里的一个字段,用来指明应用于帧数据字段的协议)
pppoes
若是数据包为PPP-over-Ethernet会话数据包(nt: ethernet type 为0×8864, PPP-over-Ethernet在上文已有说明, 可搜索关键字’PPP-over-Ethernet’找到其描述), 则与此对应的条件表达式为真.
要注意的是, 对于PPP-over-Ethernet会话数据包, 在表达式中遇到的第一个pppoes关键字会改变表达式中接下来关键字所对应数据包中数据的开始位置(即解码偏移).
例如:
pppoes && ip
表示: 过滤嵌入在PPPoE数据包中的ipv4数据包
tcp, udp, icmp
与如下表达元含义一致:
ip proto p or ip6 proto p
其中p 是以上协议之一(含义分别为: 若是数据包为ipv4或ipv6数据包而且其协议类型为 tcp,udp, 或icmp则与此对应的条件表达式为真)
iso proto protocol
若是数据包的协议类型为iso-osi协议栈中protocol协议, 则与此对应的条件表达式为真.(nt: [初解]iso-osi 网络模型中每层的具体协议与tcp/ip相应层采用的协议不一样. iso-osi各层中的具体协议另需补充 )
protocol 能够是一个数字编号, 或如下名字中之一:
clnp, esis, or isis.
(nt: clnp, Connectionless Network Protocol, 这是OSI网络模型中网络层协议 , esis, isis 未知, 需补充)
clnp, esis, isis
是如下表达的缩写
iso proto p
其中p 是以上协议之一
l1, l2, iih, lsp, snp, csnp, psnp
为IS-IS PDU 类型 的缩写.
(nt: IS-IS PDU, Intermediate system to intermediate system Protocol Data Unit, 中间系统到中间系统的协议数据单元. OSI(Open Systems Interconnection)网络由终端系统, 中间系统构成.
终端系统指路由器, 而终端系统指用户设备. 路由器造成的本地组称之为’区域’(Area)和多个区域组成一个’域’(Domain).
IS-IS 提供域内或区域内的路由. l1, l2, iih, lsp, snp, csnp, psnp 表示PDU的类型, 具体含义另需补充)
vpi n
若是数据包为ATM数据包, 则与此对应的条件表达式为真. 对于Solaris 操做系统上的SunATM设备 ,
若是数据包为ATM数据包, 而且其虚拟路径标识为n, 则与此对应的条件表达式为真.
(nt: ATM, Asychronous Transfer Mode, 实际上可理解为由ITU-T(国际电信联盟电信标准化部门)提出的一个与
TCP/IP中IP层功能等同的一系列协议, 具体协议层次另需补充)
vci n
若是数据包为ATM数据包, 则与此对应的条件表达式为真. 对于Solaris 操做系统上的SunATM设备 ,若是数据包为ATM数据包, 而且其虚拟通道标识为n, 则与此对应的条件表达式为真。
(nt: ATM, 在上文已有描述)
lane
若是数据包为ATM LANE 数据包, 则与此对应的条件表达式为真. 要注意的是, 若是是模拟以太网的LANE数据包或者LANE逻辑单元控制包, 表达式中第一个lane关键字会改变表达式中随后条件的测试. 若是没有指定lane关键字, 条件测试将按照数据包中内含LLC(逻辑链路层)的ATM包来进行.
llc
若是数据包为ATM数据包, 则与此对应的条件表达式为真. 对于Solaris 操做系统上的SunATM设备。若是数据包为ATM数据包, 而且内含LLC则与此对应的条件表达式为真
oamf4s
若是数据包为ATM数据包, 则与此对应的条件表达式为真. 对于Solaris 操做系统上的SunATM设备 , 若是数据包为ATM数据包而且是Segment OAM F4 信元(VPI=0 而且 VCI=3), 则与此对应的条件表达式为真.
(nt: OAM, Operation Administration and Maintenance, 操做管理和维护,可理解为:ATM网络中用于网络管理所产生的ATM信元的分类方式.
ATM网络中传输单位为信元, 要传输的数据终究会被分割成固定长度(53字节)的信元,(初理解: 一条物理线路可被复用, 造成虚拟路径(virtual path). 而一条虚拟路径再次被复用, 造成虚拟信道(virtual channel)).通讯双方的编址方式为:虚拟路径编号(VPI)/虚拟信道编号(VCI)).
OAM F4 flow 信元又可分为segment 类和end-to-end 类, 其区别未知, 需补充.)
oamf4e
若是数据包为ATM数据包, 则与此对应的条件表达式为真. 对于Solaris 操做系统上的SunATM设备 , 若是数据包为ATM数据包而且是 end-to-end OAM F4 信元(VPI=0 而且 VCI=4), 则与此对应的条件表达式为真.
(nt: OAM 与 end-to-end OAM F4 在上文已有描述, 可搜索’oamf4s’来定位)
oamf4
若是数据包为ATM数据包, 则与此对应的条件表达式为真. 对于Solaris 操做系统上的SunATM设备 , 若是数据包为ATM数据包而且是 end-to-end 或 segment OAM F4 信元(VPI=0 而且 VCI=3 或者 VCI=4), 则与此对应的条件表达式为真.
(nt: OAM 与 end-to-end OAM F4 在上文已有描述, 可搜索’oamf4s’来定位)
oam
若是数据包为ATM数据包, 则与此对应的条件表达式为真. 对于Solaris 操做系统上的SunATM设备 , 若是数据包为ATM数据包而且是 end-to-end 或 segment OAM F4 信元(VPI=0 而且 VCI=3 或者 VCI=4), 则与此对应的条件表达式为真.
(nt: 此选项与oamf4重复, 需确认)
metac
若是数据包为ATM数据包, 则与此对应的条件表达式为真. 对于Solaris 操做系统上的SunATM设备 , 若是数据包为ATM数据包而且是来自’元信令线路’(nt: VPI=0 而且 VCI=1, ‘元信令线路’, meta signaling circuit, 具体含义未知, 需补充),则与此对应的条件表达式为真.
bcc
若是数据包为ATM数据包, 则与此对应的条件表达式为真. 对于Solaris 操做系统上的SunATM设备 , 若是数据包为ATM数据包而且是来自’广播信令线路’(nt: VPI=0 而且 VCI=2, ‘广播信令线路’, broadcast signaling circuit, 具体含义未知, 需补充),则与此对应的条件表达式为真.
sc
若是数据包为ATM数据包, 则与此对应的条件表达式为真. 对于Solaris 操做系统上的SunATM设备 , 若是数据包为ATM数据包而且是来自’信令线路’(nt: VPI=0 而且 VCI=5, ‘信令线路’, signaling circuit, 具体含义未知, 需补充),则与此对应的条件表达式为真.
ilmic
若是数据包为ATM数据包, 则与此对应的条件表达式为真. 对于Solaris 操做系统上的SunATM设备 , 若是数据包为ATM数据包而且是来自’ILMI线路’(nt: VPI=0 而且 VCI=16, ‘ILMI’, Interim Local Management Interface , 可理解为基于SNMP(简易网络管理协议)的用于网络管理的接口)则与此对应的条件表达式为真.
connectmsg
若是数据包为ATM数据包, 则与此对应的条件表达式为真. 对于Solaris 操做系统上的SunATM设备 , 若是数据包为ATM数据包,而且是来自’信令线路’而且是Q.2931协议中规定的如下几种消息: Setup, Calling Proceeding, Connect,Connect Ack, Release, 或者Release Done. 则与此对应的条件表达式为真。(nt: Q.2931 为ITU(国际电信联盟)制定的信令协议. 其中规定了在宽带综合业务数字网络的用户接口层创建, 维护, 取消,网络链接的相关步骤。)
metaconnect
若是数据包为ATM数据包, 则与此对应的条件表达式为真. 对于Solaris 操做系统上的SunATM设备 , 若是数据包为ATM数据包,而且是来自’元信令线路’而且是Q.2931协议中规定的如下几种消息: Setup, Calling Proceeding, Connect,Connect Ack, Release, 或者Release Done. 则与此对应的条件表达式为真.
expr relop expr
若是relop 两侧的操做数(expr)知足relop 指定的关系, 则与此对应的条件表达式为真。relop 能够是如下关系操做符之一: >, expr 是一个算术表达式. 此表达式中可以使用整型常量(表示方式与标准C中一致), 二进制操做符(+, -, *, /, &, |,>), 长度操做符, 以及对特定数据包中数据的引用操做符. 要注意的是, 全部的比较操做都默认操做数是无符号的,例如, 0×80000000 和 0xffffffff 都是大于0的(nt: 对于有符号的比较, 按照补码规则, 0xffffffff 会小于0). 若是要引用数据包中的数据, 可采用如下表达方式:proto [expr : size]
proto 的取值能够是如下取值之一:ether, fddi, tr, wlan, ppp, slip, link, ip, arp, rarp,tcp, udp, icmp, ip6 或者 radio. 这指明了该引用操做所对应的协议层.(ether, fddi, wlan,tr, ppp, slip and link 对应于数据链路层, radio 对应于802.11(wlan,无线局域网)某些数据包中的附带的”radio”头(nt: 其中描述了波特率, 数据加密等信息)).
要注意的是, tcp, udp 等上层协议目前只能应用于网络层采用为IPv4或IPv6协议的网络(此限制会在tcpdump将来版本中进行修改). 对于指定协议的所需数据, 其在包数据中的偏移字节由expr 来指定.
以上表达中size 是可选的, 用来指明咱们关注那部分数据段的长度(nt:一般这段数据是数据包的一个域), 其长度能够是1, 2, 或4个字节. 若是不给定size, 默认是1个字节. 长度操做符的关键字为len,这代码整个数据包的长度.
例如, ‘ether[0] & 1 != 0′ 将会使tcpdump 抓取全部多点广播数据包.(nt: ether[0]字节的最低位为1表示
数据包目的地址是多点广播地址). ‘ip[0] & 0xf != 5′ 对应抓取全部带有选项的
IPv4数据包. ‘ip[6:2] & 0x1fff = 0′对应抓取没被破碎的IPv4数据包或者
其片断编号为0的已破碎的IPv4数据包. 这种数据检查方式也适用于tcp和udp数据的引用,
即, tcp[0]对应于TCP 头中第一个字节, 而不是对应任何一个中间的字节.
一些偏移以及域的取值除了能够用数字也可用名字来表达. 如下为可用的一些域(协议头中的域)的名字: icmptype (指ICMP 协议头
中type域), icmpcode (指ICMP 协议头code 域), 以及tcpflags(指TCP协议头的flags 域)
如下为ICMP 协议头中type 域的可用取值:
icmp-echoreply, icmp-unreach, icmp-sourcequench, icmp-redirect, icmp-echo, icmp-routeradvert,icmp-routersolicit, icmp-timx-ceed, icmp-paramprob, icmp-tstamp, icmp-tstampreply,icmp-ireq, icmp-ireqreply, icmp-maskreq, icmp-maskreply
如下为TCP 协议头中flags 域的可用取值:tcp-fin, tcp-syn, tcp-rst, tcp-push,tcp-ack, tcp-urg.
问啊-一键呼叫程序员答题神器,牛人一对一服务,开发者编程必备官方网站:www.wenaaa.com
QQ群290551701 汇集不少互联网精英,技术总监,架构师,项目经理!开源技术研究,欢迎业内人士,大牛及新手有志于从事IT行业人员进入!