RBF(径向基函数)神经网络

径向基函数(RBF)神经网络 自己的总结: 1、输入层到隐藏层之间不是通过权值和阈值进行连接的,而是通过输入样本与隐藏层点之间的距离(与中心点的距离)连接的。 2、得到距离之后,将距离代入径向基函数,得到一个数值。数值再与后边的权值相乘再求总和,就得到了相应输入的输出。 3、在训练网络之前,需要确定中心点的个数,和中心点的位置。以及求出隐藏层各径向基函数的方差(宽窄程度)。和隐藏层和输出层之间的权
相关文章
相关标签/搜索