#题目连接 BZOJ4727 #题解 前置芝士php
1.竞赛图存在哈密顿路径 2.竞赛图存在哈密顿回路,当且仅当它是强联通的ios
因此咱们将图缩点后,拓扑排序后必定是一条链,且以前的块内的点和以后块内的点的边必定全都由前面指向后面 而每一个块都是强联通的,因此咱们从起点出发,必定能找到一条路径走完后面全部点spa
咱们只需预处理出每一个强联通块内的一条哈密顿回路,就能够求出答案了code
如今问题转化成了求竞赛图的哈密顿回路 咱们先求出一条哈密顿路径blog
##哈密顿路径 从竞赛图中任意一个点出发向外扩展,维护一个链表 倘若扩展到点$u$ 1.若是$u$指向链头或链尾,直接加入链表 2.不然链的中间必定存在相邻两点,使得$i$指向$u$,$u$指向$i + 1$,这时候把$u$插入之间便可排序
##哈密顿回路 咱们在哈密顿路径的基础上构造哈密顿回路 首先若是存在如图状况,前$4$个点构成回路 咱们先找到最大的一个这样的回路,而后只需处理后面不在圈内的几个点ci
对于一个点$u$,若是存在一条$u$指向圈内点的边,那么$u$能够插入圈内 不然跳过$u$,将$u$和以后插入圈内的点一块儿插入圈内 因为图是强联通的,因此最后必定能所有加入get
复杂度$O(n^2)$string
#include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<vector> #include<queue> #include<cmath> #include<map> #define LL long long int #define REP(i,n) for (register int i = 1; i <= (n); i++) #define cls(s,v) memset(s,v,sizeof(s)) #define mp(a,b) make_pair<int,int>(a,b) #define cp pair<int,int> #define res register using namespace std; const int maxn = 2005,maxm = 100005,INF = 0x3f3f3f3f; inline int read(){ int out = 0,flag = 1; char c = getchar(); while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();} while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();} return flag ? out : -out; } int tmp[20],ti; inline void write(int x){ ti = 0; while (x) tmp[++ti] = x % 10,x /= 10; while (ti) putchar('0' + tmp[ti--]); } vector<int> S[maxn]; int n,G[maxn][maxn]; int dfn[maxn],low[maxn],Scc[maxn],st[maxn],top,cnt,scci; int nxt[maxn],head[maxn],tail[maxn]; int Nxt[maxn],Head[maxn],Tail[maxn]; int g[maxn][maxn],de[maxn],q[maxn],hh,tt; int tp[maxn],pos[maxn],ans[maxn],ansi,tot; int c[maxn],ci; void dfs(int u){ dfn[u] = low[u] = ++cnt; st[++top] = u; for (res int to = 1; to <= n; to++){ if (!G[u][to]) continue; if (!dfn[to]){ dfs(to); low[u] = min(low[u],low[to]); } else if (!Scc[to]) low[u] = min(low[u],dfn[to]); } if (low[u] == dfn[u]){ scci++; do{ Scc[st[top]] = scci; S[scci].push_back(st[top]); }while (st[top--] != u); } } void workline(){ int siz; for (res int p = 1; p <= scci; p++){ siz = S[p].size(); head[p] = tail[p] = S[p][0]; for (res int i = 1; i < siz; i++){ int u = S[p][i]; if (G[u][head[p]]) nxt[u] = head[p],head[p] = u; else if (G[tail[p]][u]) nxt[tail[p]] = u,tail[p] = u; else for (res int j = head[p]; j; j = nxt[j]) if (G[j][u] && G[u][nxt[j]]){ nxt[u] = nxt[j]; nxt[j] = u; break; } } } } void workcir(){ int p,last; for (int i = 1; i <= scci; i++){ ci = 0; p = 1; for (int k = head[i]; k; k = nxt[k]) c[++ci] = k; for (int k = ci; k; k--) if (G[c[k]][head[i]]) {p = k; break;} Head[i] = c[1]; Tail[i] = c[p]; for (int k = 1; k < p; k++) Nxt[c[k]] = c[k + 1]; last = c[p + 1]; for (int k = p + 1; k <= ci; k++){ int u = c[k],flag = false; for (int j = Nxt[Head[i]],pre = Head[i]; j; j = Nxt[pre = j]) if (G[u][j]){ Nxt[pre] = last; Nxt[u] = j; flag = true; break; } if (flag) last = c[k + 1]; else Nxt[u] = c[k + 1]; } Nxt[Tail[i]] = Head[i]; } } void work(){ for (res int i = 1; i <= n; i++){ int u = Scc[i]; for (res int j = 1; j <= n; j++) if (G[i][j] && Scc[j] != u && !g[u][Scc[j]]) de[Scc[j]]++,g[u][Scc[j]] = 1; } for (res int i = 1; i <= scci; i++) if (!de[i]) q[++tt] = i; int u; hh = 1; while (hh <= tt){ u = q[hh++]; pos[u] = ++tot; tp[tot] = u; for (int i = 1; i <= scci; i++) if (g[u][i]){ if (!(--de[i])) q[++tt] = i; } } for (res int u = 1; u <= n; u++){ int s = Scc[u]; ans[ansi = 1] = u; for (res int i = Nxt[u]; i != u; i = Nxt[i]) ans[++ansi] = i; for (res int j = pos[s] + 1; j <= scci; j++){ int t = tp[j]; ans[++ansi] = Head[t]; for (res int i = Nxt[Head[t]]; i != Head[t]; i = Nxt[i]) ans[++ansi] = i; } write(ansi); putchar(' '); for (res int i = 1; i <= ansi; i++){ write(ans[i]); if (i < ansi) putchar(' '); } puts(""); } } int main(){ n = read(); for (res int i = 2; i <= n; i++) for (res int j = 1; j < i; j++) G[i][j] = ((G[j][i] = read()) ^ 1); REP(i,n) if (!dfn[i]) dfs(i); workline(); //puts("LXT"); workcir(); //puts("LXT"); work(); return 0; }