7 分钟全面了解位运算

位运算是咱们在编程中常会遇到的操做,但仍然有不少开发者并不了解位运算,这就致使在遇到位运算时会“打退堂鼓”。实际上,位运算并无那么复杂,只要咱们了解其运算基础和运算符的运算规则,就可以掌握位运算的知识。接下来,咱们一块儿学习位运算的相关知识。python

程序中的数在计算机内存中都是以二进制的形式存在的,位运算就是直接对整数在内存中对应的二进制位进行操做。算法

注意:本文只讨论整数运算,小数运算不在本文研究之列编程

位运算的基础

咱们经常使用的 35 等数字是十进制表示,而位运算的基础是二进制。即人类采用十进制,机器采用的是二进制,要深刻了解位运算,就须要了解十进制和二进制的转换方法和对应关系。bash

二进制

十进制转二进制时,采用“除 2 取余,逆序排列”法:微信

  1. 用 2 整除十进制数,获得商和余数;
  2. 再用 2 整除商,获得新的商和余数;
  3. 重复第 1 和第 2 步,直到商为 0;
  4. 将先获得的余数做为二进制数的高位,后获得的余数做为二进制数的低位,依次排序;

排序结果就是该十进制数的二进制表示。例如十进制数 101 转换为二进制数的计算过程以下:编程语言

101 % 2 = 50 余 1
50 % 2 = 25 余 0
25 % 2 = 12 余 1
12 % 2 = 6 余 0
6 % 2 = 3 余 0
3 % 2 = 1 余 1
1 % 2 = 0 余 1
复制代码

逆序排列即二进制中的从高位到低位排序,获得 7 位二进制数为 1100101,若是要转换为 8 位二进制数,就须要在最高位补 0。即十进制数的 8 位二进制数为 01100101学习

其完整过程以下图所示:ui

有网友整理了常见的进制与 ASCII 码对照表,表内容以下:spa

ASCII 控制字符code

ASCII 可显示字符

补码

如今,咱们已经了解到二进制与十进制的换算方法,并拥有了进制对照表。但在开始学习位运算符以前,咱们还须要了解补码的知识。

数值有正负之分,那么仅有 01 的二进制如何表示正负呢?

人们设定,二进制中最高位为 0 表明正,为 1 则表明负。例如 0000 1100 对应的十进制为 12,而 1000 1100 对应的十进制为 -12。这种表示被称做原码。但新的问题出现了,本来二进制的最高位始终为 0,为了表示正负又多出了 1,在执行运算时就会出错。举个例子,1 + (-2) 的二进制运算以下:

0000 0001 + 1000 0010 
= 1000 0011
= -3 
复制代码

这显然是有问题的,问题就处在这个表明正负的最高位。接着,人们又弄出了反码(二进制各位置的 01 互换,例如 0000 1100 的反码为 1111 0011)。此时,运算就会变成这样:

0000 0001 + 1111 1101
= 1111 1110
# 在转换成十进制前,须要再次反码
= 1000 0001 
= -1
复制代码

此次好像正确了。但它仍然有例外,咱们来看一下 1 + (-1)

0000 0001 + 1111 + 1110
= 1111 1111
= 1000 0000
= -0
复制代码

零是没有正负之分的,为了解决这个问题,就搞出了补码的概念。补码是为了让负数变成可以加的正数,因此 负数的补码= 负数的绝对值取反 + 1,例如 -1 的补码为:

-1 的绝对值 1
= 0000 0001 # 1 的二进制原码
= 1111 1110 # 原码取反
= 1111 1111 # +1 后获得补码
复制代码

-1 补码推导的完整过程以下图所示:

反过来,由补码推导原码的过程为 原码 = 补码 - 1,再求反。要注意的是,反码过程当中,最高位的值不变,这样才可以保证结果的正负不会出错。例如 1 + (-6)1 + (-9) 的运算过程以下:

# 1 的补码 + -6 的补码
0000 0001 + 1111 1010
= 1111 1011 # 补码运算结果
= 1111 1010 # 对补码减 1,获得反码
= 1000 0101 # 反码取反,获得原码
= -5 # 对应的十进制
复制代码
# 1 的补码 + -9 的补码
0000 0001 + 1111 0111
= 1111 1000 # 补码运算结果
= 1111 0111 # 对补码减 1,获得反码
= 1000 1000 # 反码取反,获得原码
= -8 # 对应的十进制
复制代码

要注意的是,正数的补码与原码相同,不须要额外运算。也能够说,补码的出现就是为了解决负数运算时的符号问题。

人生苦短 我用 Python。

崔庆才|静觅 邀请你关注微信公众号:进击的Coder

运算符介绍

位运算分为 6 种,它们是:

名称 符号
按位与 &
按位或 |
按位异或 ^
按位取反 ~
左移运算 <<
右移运算 >>

按位与

按位与运算将参与运算的两数对应的二进制位相与,当对应的二进制位均为 1 时,结果位为 1,不然结果位为 0。按位与运算的运算符为 &,参与运算的数以补码方式出现。举个例子,将数字 5 和数字 8 进行按位与运算,实际上是将数字 5 对应的二进制 0000 0101 和数字 8 对应的二进制 0000 1000 进行按位与运算,即:

0000 0101
&
0000 1000
复制代码

根据按位与的规则,将各个位置的数进行比对。运算过程以下:

0000 0101
&
0000 1000
---- ----
0000 0000
复制代码

因为它们对应位置中没有“均为 1 ”的状况,因此获得的结果是 0000 0000。数字 58 按位与运算的完整过程以下图:

将结果换算成十进制,获得 0,即 5&8 = 0

按位或

按位或运算将参与运算的两数对应的二进制位相或,只要对应的二进制位中有 1,结果位为 1,不然结果位为 0。按位或运算的运算符为 |,参与运算的数以补码方式出现。举个例子,将数字 3 和数字 7 进行按位或运算,实际上是将数字 3 对应的二进制 0000 0011和数字 7 对应的二进制 0000 0111 进行按位或运算,即:

0000 0011
|
0000 0111
复制代码

根据按位或的规则,将各个位置的数进行比对。运算过程以下:

0000 0011
|
0000 0111
---- ----
0000 0111
复制代码

最终获得的结果为 0000 0111。将结果换算成十进制,获得 7,即 3|7 = 7

按位异或

按位异或运算将参与运算的两数对应的二进制位相异或,当对应的二进制位值不一样时,结果位为 1,不然结果位为 0。按位异或的运算符为 ^,参与运算的数以补码方式出现。举个例子,将数字 12 和数字 7 进行按位异或运算,实际上是将数字 12 对应的二进制 0000 1100 和数字 7 对应的二进制 0000 0111 进行按位异或运算,即:

0000 1100
^
0000 0111
复制代码

根据按位异或的规则,将各个位置的数进行比对。运算过程以下:

0000 1100
^
0000 0111
---- ----
0000 1011
复制代码

最终获得的结果为 0000 1011。将结果换算成十进制,获得 11,即 12^7 = 11

按位取反

按位取反运算将二进制数的每个位上面的 0 换成 11 换成 0。按位取反的运算符为 ~,参与运算的数以补码方式出现。举个例子,对数字 9 进行按位取反运算,实际上是将数字 9 对应的二进制 0000 1001 进行按位取反运算,即:

~0000 1001
= 0000 1001 # 补码,正数补码即原码
= 1111 1010 # 取反
= -10
复制代码

最终获得的结果为 -10。再来看一个例子,-20 按位取反的过程以下:

~0001 0100
= 1110 1100 # 补码
= 0001 0011 # 取反
= 19
复制代码

最终获得的结果为 19。咱们从示例中找到了规律,按位取反的结果用数学公式表示:

~x = -(x + 1)

咱们能够将其套用在 9-20 上:

~9 = -(9 + 1) = -10
~(-20) = -((-20) + 1) = 19
复制代码

这个规律也能够做用于数字 0 上,即 ~0 = -(0 + 1) = -1

左移运算

左移运算将数对应的二进位所有向左移动若干位,高位丢弃,低位补 0。左移运算的运算符为 <<。举个例子,将数字 5 左移 4 位,实际上是将数字 5 对应的二进制 0000 0101 中的二进位向左移动 4 位,即:

5 << 4
= 0000 0101 << 4
= 0101 0000 # 高位丢弃,低位补 0
= 80
复制代码

数字 5 左移 4 位的完整运算过程以下图:

最终结果为 80。这等效于:

5 * (2) ^4

也就是说,左移运算的规律为:

x << n = x * (2) ^ n

右移运算

右移运算将数对应的二进位所有向右移动若干位。对于左边的空位,若是是正数则补 0,负数可能补 01 (Turbo C 和不少编译器选择补 1)。右移运算的运算符为 >>。举个例子,将数字 80 右移 4 位,实际上是将数字 80 对应的二进制 0101 0000 中的二进位向右移动 4 位,即:

80 >> 4
= 0101 0000 >> 4
= 0000 0101 # 正数补0,负数补1 
= 5
复制代码

最终结果为 5。这等效于:

80 \div (2)^4

也就是说,右移运算的规律为:

x >> n = x \div (2) ^ n

要注意的是,不能整除时,取整数。这中除法取整的规则相似于 PYTHON 语言中的地板除。

超酷人生 我用 Rust

韦世东|奎因 邀请你关注微信公众号:Rust之禅

位运算的应用

在掌握了位运算的知识后,咱们能够在开发中尝试使用它。坊间一直流传着位运算的效率高,速度快,但从未见过文献证实,因此本文不讨论效率和速度的问题。若是正在阅读文章的你有相关文献,请留言告知,谢谢。

判断数字奇偶

一般,咱们会经过取余来判断数字是奇数仍是偶数。例如判断 101 的奇偶用的方法是:

# python
if 101 % 2:
	print('偶数')
else:
	print('奇数')
复制代码

咱们也能够经过位运算中的按位与来实现奇偶判断,例如:

# python
if 101 & 1:
	print('奇数')
else:
	print('偶数')
复制代码

这是由于奇数的二进制最低位始终为 1,而偶数的二进制最低为始终为 0。因此,不管任何奇数与 10000 0001 相与获得的都是 1,任何偶数与其相与获得的都是 0

变量交换

在 C 语言中,两个变量的交换必须经过第三个变量来实现。伪代码以下:

# 伪代码
a = 3, b = 5
c = a
a = b
b = a
--------
a = 5, b = 3
复制代码

在 PYTHON 语言中并无这么麻烦,能够直接交换。对应的 PYTHON 代码以下:

# python
a, b = 3, 5
a, b = b, a
print(a, b)
复制代码

代码运行结果为 5 3。但大部分编程语言都不支持 PYTHON 这种写法,在这种状况下咱们能够经过位运算中的按位异或来实现变量的交换。对应的伪代码以下:

# 伪代码
a = 3, b = 5
a = a ^ b
b = a ^ b
a = a ^ b
复制代码

最后,a = 5, b = 3。咱们能够用 C 语言和 PYTHON 语言进行验证,对应的 PYTHON 代码以下:

# python
a, b = 3, 5
a = a ^ b
b = a ^ b
a = a ^ b
print(a, b)
复制代码

代码运行结果为 5 3,说明变量交换成功。对应的 C 代码以下:

#include<stdio.h>
void main() {
    int a = 3, b = 5;
    printf("交换前:a=%d , b=%d\n",a,b);
    a = a^b;
    b = a^b;
    a = a^b;
    printf("交换后:a=%d , b=%d\n",a, b);           
} 
复制代码

代码运行结果以下:

交换前:a=3 , b=5
交换后:a=5 , b=3
复制代码

这说明变量交换成功。

求 x 与 2 的 n 次方乘积

设一个数为 x,求 x2n 次方乘积。这用数学来计算都是很是简单的:

x * (2) ^ n

在位运算中,要实现这个需求只须要用到左移运算,即 x << n

取 x 的第 k 位

即取数字 x 对应的二进制的第 k 位上的二进制值。假设数字为 5,其对应的二进制为 0000 0101,取第 k 位二进制值的位运算为 x >> k & 1。咱们能够用 PYTHON 代码进行验证:

# python
x = 5  # 0000 0101
for i in range(8):
	print(x >> i & 1)
复制代码

代码运行结果以下:

1
0
1
0
0
0
0
0
复制代码

这说明位运算的算法是正确的,能够知足咱们的需求。

判断赋值

if a == x:
    x = b
else:
    x = a
复制代码

等效于 x = a ^ b ^ x。咱们能够经过 PYTHON 代码来验证:

# python
a, b, x = 6, 9, 6
if a == x:
    x = b
else:
    x = a
print(a, b, x)
复制代码

代码运行结果为 699,与之等效的代码以下:

# python
a, b, x = 6, 9, 6
x = a ^ b ^ x
print(a, b, x)
复制代码

这样就省去了 if else 的判断语句。

代替地板除

二分查找是最经常使用的算法之一,但它有必定的前提条件:二分查找的目标必须采用顺序存储结构,且元素有序排列。例如 PYTHON 中的有序列表。二分查找的最优复杂度为 O(1),最差时间复杂度为 O(log n)。举个例子,假设咱们须要从列表 [1, 3, 5, 6, 7, 8, 12, 22, 23, 43, 65, 76, 90, 543] 中找到指定元素的下标,对应的 PYTHON 代码以下:

# python
def search(lis: list, x: int) -> int:
    """非递归二分查找 返回指定元素在列表中的索引 -1 表明不存在"""
    mix_index = 0
    max_index = len(lis) - 1
    while mix_index <= max_index:
        midpoint = (mix_index + max_index) // 2
        if lis[midpoint] < x:
            mix_index = mix_index + 1
        elif lis[midpoint] > x:
            max_index = max_index - 1
        else:
            return midpoint
    return -1


lists = [1, 3, 5, 6, 7, 8, 12, 22, 23, 43, 65, 76, 90, 543]
res = search(lists, 76)
print(res)
复制代码

在取列表中间值时使用的语句是 midpoint = (mix_index + max_index) // 2,即地板除,咱们能够将其替换为 midpoint = (mix_index + max_index) >> 1 最终获得的结果是相同的。这是由于左移 1位 等效于乘以 2,而右移 1 位等效于除以 2。这样的案例还有不少,此处再也不赘述。

至此,咱们已经对位运算有了必定的了解,但愿你在工做中使用位运算。更多 Saoperation 和知识请扫描下方二维码。

相关文章
相关标签/搜索