【AtCoder】AGC011

AGC011

A - Airport Bus

大意:有N我的,每一个人只能在\([T_i,T_i +K]\)这段区间乘车,每辆车安排C人,问最少安排几辆车node

直接扫,遇到一个没有车的在\(T_i +K\)分配一辆ios

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <cmath>
#include <bitset>
#include <queue>
#define enter putchar('\n')
#define space putchar(' ')
//#define ivorysi
#define pb push_back
#define mo 974711
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define MAXN 500005
#define eps 1e-12
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;char c = getchar();T f = 1;
    while(c < '0' || c > '9') {
    if(c == '-') f = -1;
    c = getchar();
    }
    while(c >= '0' && c <= '9') {
    res = res * 10 - '0' + c;
    c = getchar();
    }
    res = res * f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) out(x / 10);
    putchar('0' + x % 10);
}
int N,C,K;
int T[1000005];
void Solve() {
    read(N);read(C);read(K);
    for(int i = 1 ; i <= N ; ++i) read(T[i]);
    sort(T + 1,T + N + 1);
    int ans = 0;
    int cnt = 0,t = 0;
    for(int i = 1 ; i <= N ; ++i) {
    if(t < T[i] || !cnt) {
        ++ans;
        t = T[i] + K;
        cnt = C;
    }
    --cnt;
    }
    out(ans);enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
}

B - Colorful Creatures

大意:N个怪兽颜色两两不一样,两个怪物若是一个大小是A颜色是B,一个大小是C(C <= 2 * A)颜色是D,新怪物能够是大小A+C,颜色是B,问最后多是几种颜色c++

直接二分找知足要求的数的位置,而后能扩到的最大致积就是从最小的数到这个数的前缀和,每次至少扩大两倍,因此只用log次优化

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <cmath>
#include <bitset>
#include <queue>
#define enter putchar('\n')
#define space putchar(' ')
//#define ivorysi
#define pb push_back
#define mo 974711
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define MAXN 500005
#define eps 1e-12
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;char c = getchar();T f = 1;
    while(c < '0' || c > '9') {
    if(c == '-') f = -1;
    c = getchar();
    }
    while(c >= '0' && c <= '9') {
    res = res * 10 - '0' + c;
    c = getchar();
    }
    res = res * f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) out(x / 10);
    putchar('0' + x % 10);
}
int N;
int64 A[100005],tmp[100005],sum[1000005];
void Solve() {
    read(N);
    for(int i = 1 ; i <= N ; ++i) {
    read(A[i]);
    tmp[i] = A[i];
    }
    tmp[N + 1] = 1000000001;
    sort(tmp + 1,tmp + N + 2);
    int ans = 0;
    for(int i = 1 ; i <= N ; ++i) {
    sum[i] = sum[i - 1] + tmp[i]; 
    }
    for(int i = 1 ; i <= N ; ++i) {
    if(2 * A[i] >= tmp[N]) {++ans;continue;}
    int t = lower_bound(tmp + 1,tmp + N + 2,2 * A[i] + 1) - tmp - 1;
    while(1) {
        if(2 * sum[t] >= tmp[N]) {++ans;break;}
        int p = lower_bound(tmp + 1,tmp + N + 2,sum[t] * 2 + 1) - tmp - 1;
        if(p == t) break;
        t = p;
    }
    }
    out(ans);enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
}

C - Squared Graph

大意是给出一张图,而后建一张新图,新图的点标号是(a,b)
若是a和c有一条边,b和d有一条边,那么(a,b)和(c,d)之间有一条边ui

咱们把这道题当成这道题来作,给出两张图,若是第一张图有边(a,c),第二张图有边(b,d),那么第三张图上有边(a,b)(c,d)this

若是某张图只有一个点,那么答案就是另外一张图的点数spa

而后咱们发现对于某两个点对第一张图(a,c),第二张图(b,d)若是有一条长度为L的路径,那么第三张图(a,b)(c,d)必定能够联通
可是咱们发现咱们通过的路径能够不是简单路径,也就是咱们反复走一条边,那么咱们只和路径长度的奇偶性有关了code

很容易想到二分图,若是两张图都是二分图且联通的话,那么第三张图联通份量的个数是2
分别是\(S_a * T_b \cup T_a * S_b\)\(S_a * S_b \cup T_a * T_b\)ci

而两张图都是非二分图且联通的话,任意路径的奇偶性均可以互相转化,因此整张图就是一个联通块
那么咱们求出两个图的孤立点个数\(i_A,i_B\),两个图的非二分图联通块个数\(p_A,p_B\),两个图的二分图联通块个数\(q_A,q_B\)
答案就是
\(i_Ai_B + i_A(N_B - i_B) + i_B(N_A - i_A) + p_Ap_B + p_Aq_B + p_Bq_A + 2q_Aq_B\)get

代码

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <cmath>
#include <bitset>
#include <queue>
#define enter putchar('\n')
#define space putchar(' ')
//#define ivorysi
#define pb push_back
#define mo 974711
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define MAXN 200005
#define eps 1e-12
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;char c = getchar();T f = 1;
    while(c < '0' || c > '9') {
    if(c == '-') f = -1;
    c = getchar();
    }
    while(c >= '0' && c <= '9') {
    res = res * 10 - '0' + c;
    c = getchar();
    }
    res = res * f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) out(x / 10);
    putchar('0' + x % 10);
}
int N,M,I,P,Q;
struct node {
    int next,to;
}E[MAXN * 2];
int head[MAXN],sumE,col[MAXN];
bool vis[MAXN];
void dfs(int u) {
    vis[u] = 1;
    for(int i = head[u] ; i ; i = E[i].next) {
    int v = E[i].to;
    if(!vis[v]) {
        dfs(v);
    }
    }
}
bool paint(int u) {
    if(!col[u]) col[u] = 2;
    for(int i = head[u] ; i; i = E[i].next) {
    int v = E[i].to;
    if(!col[v]) {col[v] = col[u] ^ 1;if(!paint(v)) return false;}
    else if(col[v] == col[u]) return false;
    }
    return true;
}
void add(int u,int v) {
    E[++sumE].to = v;
    E[sumE].next = head[u];
    head[u] = sumE;
}
void Solve() {
    read(N);read(M);
    int u,v;
    for(int i = 1 ; i <= M ; ++i) {
    read(u);read(v);
    add(u,v);add(v,u);
    }
    for(int i = 1 ; i <= N ; ++i) {
    if(!head[i]) ++I;
    else if(!vis[i]){
        dfs(i);
        if(paint(i)) ++Q;
        else ++P;
    }
    }
    int64 ans = 1LL * I * I + 2LL * I * (N - I);
    ans += 1LL * P * P + 2LL * P * Q + 2LL * Q * Q;
    out(ans);enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
}

D - Half Reflector

大意是n个管子排成一排,每一个管子有两种状态,A状态是从某个方向进去,从原方向出来,B状态是从某个方向进去,从另外一个方向出来
球通过一个A状态的管子这个管子会马上变成B状态,通过一个B状态的管子会马上变成A状态

往里面扔K个球,问最后管子的状态

咱们发现若是第一个管子是A的话,球会马上弹出去

不然的话
若是第二个管子是B
那么
A -> B
A A ->
若是第二个管子是A
A -> A
A <- B
B -> B
B A ->
也就是,每次操做后的状态只与右边第一个管子有关,而且最后一个管子必定是A
那么操做能够考虑成,删掉第一个字符,后面的字符所有取反,而后再最后填上一个A

然而有K次,咱们发现起点移动N次以后就是循环了
若是N次以后是
BABABA...那么这个形态不会变

若是N次以后是
ABABAB...

那么以后的形态就是
BBABAB...
ABABAB...
这样的循环了

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <cmath>
#include <bitset>
#include <queue>
#define enter putchar('\n')
#define space putchar(' ')
//#define ivorysi
#define pb push_back
#define mo 974711
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define MAXN 200005
#define eps 1e-12
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;char c = getchar();T f = 1;
    while(c < '0' || c > '9') {
    if(c == '-') f = -1;
    c = getchar();
    }
    while(c >= '0' && c <= '9') {
    res = res * 10 - '0' + c;
    c = getchar();
    }
    res = res * f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) out(x / 10);
    putchar('0' + x % 10);
}
char s[MAXN];
int N,K,p = 1,num[MAXN],cnt,st;
void Solve() {
    read(N);read(K);
    scanf("%s",s + 1);
    for(int i = 1 ; i <= N ; ++i) num[i] = s[i] - 'A';
    st = num[1];
    while(K--) {
    if(st == 0) {st ^= 1;num[p] ^= 1;}
    else {
        ++p;++cnt;
        st = num[p];
        st ^= (cnt & 1);
    }
    if(p > N) break;
    }
    if(p <= N) {
    for(int i = p ; i <= N ; ++i) putchar('A' + (num[i] ^ (cnt & 1)));
    int t = N - (N - p + 1),c = (cnt - 1) & 1;
    while(t--) {
        putchar('A' + c);
        c ^= 1;
    }
    }
    else {
    if((cnt - 1) & 1) {
        for(int i = 1 ; i <= N ; ++i) putchar('A' + (i & 1));
    }
    else {
        putchar('A' + (K & 1));
        for(int i = 1 ; i < N ; ++i) putchar('A' + (i & 1));
    }
    }
    enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
}

E - Increasing Numbers

咱们发现一个非降低的数字必定能够用不超过九个1111111111...1111表示

那么咱们能够获得这样的一个式子,假如咱们用了k个数,那么最多的话能够是这样的
\(N = \sum_{i = 1}^{9k} (10^{r_i} - 1) / 9\)
\(9N + 9k = \sum_{i = 1}^{9k} 10^{r_{i}}\)

咱们只要每次计算出9N + 9 ,9N + 18...,而后看看十进制下每一位的数字和有没有超过9k,直接加的话最坏状况是一次操做\(O(L)\)的,可是你们应该都有种直觉总的操做就是\(O(L)\)的……就是势能分析啦,不太会证,就是一次长的进位事后以后不会再进位了。。。

复杂度\(O(lg N)\)

代码

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <cmath>
#include <bitset>
#include <queue>
#define enter putchar('\n')
#define space putchar(' ')
//#define ivorysi
#define pb push_back
#define mo 974711
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define MAXN 200005
#define eps 1e-12
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;char c = getchar();T f = 1;
    while(c < '0' || c > '9') {
    if(c == '-') f = -1;
    c = getchar();
    }
    while(c >= '0' && c <= '9') {
    res = res * 10 - '0' + c;
    c = getchar();
    }
    res = res * f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) out(x / 10);
    putchar('0' + x % 10);
}
struct Bignum {
    vector<int> v;
    int sum;
    Bignum operator = (string s) {
    v.clear();
    sum = 0;
    for(int i = s.length() - 1 ; i >= 0 ; --i) {
        v.pb(s[i] - '0');
        sum += s[i] - '0';
    }
    return *this;
    }
    friend Bignum operator * (const Bignum &a,const int b) {
    int s = a.v.size();
    Bignum c;c.v.clear();
    for(int i = 0 ; i <= s ; ++i) c.v.pb(0);
    int g = 0;
    for(int i = 0 ; i < s ; ++i) {
        int x = a.v[i] * b + g;
        c.v[i] = x % 10;
        g = x / 10;
    }
    if(g) c.v[s] = g;
    for(int i = s ; i > 0 ; --i) {
        if(c.v[i] == 0) c.v.pop_back();
        else break;
    }
    c.sum = 0;s = c.v.size();
    for(int i = 0 ; i < s ; ++i) c.sum += c.v[i];
    return c;
    }
}A;
string s;
void Solve() {
    cin>>s;
    A = s;
    A = A * 9;
    int ans = 0;
    while(1) {
    int s = A.v.size();
    int g = 9;
    for(int i = 0 ; i < s ; ++i) {
        if(!g) break;
        A.sum -= A.v[i];
        int x = A.v[i] + g;
        A.v[i] = x % 10;
        A.sum += A.v[i];
        g = x / 10;
    }
    if(g) A.v.pb(g),A.sum += g;
    ++ans;
    if(ans * 9 >= A.sum) break;
    }
    out(ans);enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
}

F - Train Service Planning

若是认为从0到N每一站休息时间是\(q_0,q_1,q_2...q_{N- 1}\)

而后咱们认为从N到0每一站休息时间是\(p_0,p_1,p_2...p_{N - 1}\)

\((\sum_{i = 0}^{s - 1} q_i + \sum_{i = 0}^{s - 1}A_{i},\sum_{i = 0}^{s - 1} q_i + \sum_{i = 0}^{s}A_{i})\)

这是从第s - 1站走到第s站的时间段

\((N - \sum_{i = 0}^{s - 1} p_i - \sum_{i = 0}^{s}A_{i},N - \sum_{i = 0}^{s - 1} p_i - \sum_{i = 0}^{s - 1}A_{i})\)

咱们要这两个区间没有交集

因为取模k意义下,最后只要知足

\(\sum_{i = 0}^{s - 1}p_{i} + q_i \notin (-2\sum_{i = 0}^{s}A_{i},-2\sum_{i = 0}^{s - 1}A{i})\)

最后就变成,对于每一个单行道,咱们要求坐标取模的值在某个区间内

\(dpL[i]\)是i的时候在\(L[i]\)的位置上以后还要走多远,\(dpR[i]\)同理

从后往前更新,每次找\(L[i]\)不在区间\([L[j],R[j]]\)的一个最小的j

而后用\(dpL[j]\)\(dpR[j]\)更新

线段树优化

而后能够当答案的\(dpL[i]\)要求\(L[i]\)\(1-i\)的区间内,能够用线段树求

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;T f = 1;char c = getchar();
    while(c < '0' || c > '9') {
        if(c == '-') f = -1;
        c = getchar();
    }
    while(c >= '0' && c <= '9') {
        res = res * 10 +c - '0';
        c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) {
        out(x / 10);
    }
    putchar('0' + x % 10);
}

int N;
int64 K,A[MAXN],sum[MAXN];
int B[MAXN],tot;
int64 L[MAXN],R[MAXN],dpL[MAXN],dpR[MAXN],val[MAXN];
struct node {
    int l,r;
    int mx,lz;
}tr[MAXN * 4];
int id;
void update(int u) {
    if(!id) tr[u].mx = min(tr[u << 1].mx,tr[u << 1 | 1].mx);
    else tr[u].mx = max(tr[u << 1].mx,tr[u << 1 | 1].mx);
}
void addlz(int u,int v) {
    tr[u].lz = v;
    tr[u].mx = v;
}
void pushdown(int u) {
    if(tr[u].lz) {
        addlz(u << 1,tr[u].lz);
        addlz(u << 1 | 1,tr[u].lz);
        tr[u].lz = 0;
    }
}
void build(int u,int l,int r,int v) {
    tr[u].l = l;tr[u].r = r;tr[u].lz = 0;
    if(l == r) {
        tr[u].mx = v;
        return;
    }
    int mid = (l + r) >> 1;
    build(u << 1,l,mid,v);
    build(u << 1 | 1,mid + 1,r,v);
    update(u);
}
void cover(int u,int l,int r,int v) {
    if(l > r) return;
    if(tr[u].l == l && tr[u].r == r) {
        addlz(u,v);
        return;
    }
    pushdown(u);
    int mid = (tr[u].l + tr[u].r) >> 1;
    if(r <= mid) cover(u << 1,l,r,v);
    else if(l > mid) cover(u << 1 | 1,l,r,v);
    else {cover(u << 1,l,mid,v);cover(u << 1 | 1,mid + 1,r,v);}
    update(u);
}
int query(int u,int l,int r) {
    if(l > r) return N + 1;
    if(tr[u].l == l && tr[u].r == r) return tr[u].mx;
    pushdown(u);
    int mid = (tr[u].l + tr[u].r) >> 1;
    if(r <= mid) return query(u << 1,l,r);
    else if(l > mid) return query(u << 1 | 1,l,r);
    else {
        if(!id) return min(query(u << 1,l,mid),query(u << 1 | 1,mid + 1,r));
        else return max(query(u << 1,l,mid),query(u << 1 | 1,mid + 1,r));
    }
}
int64 dist(int64 A,int64 B) {
    if(B >= A) return B - A;
    else return K - (A - B);
}
void Solve() {
    read(N);read(K);
    for(int i = 1 ; i <= N ; ++i) {
        read(A[i]);read(B[i]);
        sum[i] = sum[i - 1] + A[i];
        if(B[i] == 1) {
            if(2 * A[i] > K) {puts("-1");return;}
            L[i] = (-2 * sum[i - 1] % K + K) % K;
            R[i] = (-2 * sum[i] % K + K) % K;
            val[++tot] = L[i];val[++tot] = R[i];
        }
    }

    sort(val + 1,val + tot + 1);
    tot = unique(val + 1,val + tot + 1) - val - 1;
    id = 0;
    build(1,1,tot,N + 1);
    for(int i = N ; i >= 1 ; --i) {
        if(B[i] == 1) {
            int l = lower_bound(val + 1,val + tot + 1,L[i]) - val;
            int r = lower_bound(val + 1,val + tot + 1,R[i]) - val;
            int t = query(1,l,l);
            if(t == N + 1) dpL[i] = 0;
            else dpL[i] = min(dpL[t] + dist(L[i],L[t]),dpR[t] + dist(L[i],R[t]));
            t = query(1,r,r);
            if(t == N + 1) dpR[i] = 0;
            else dpR[i] = min(dpR[t] + dist(R[i],R[t]),dpL[t] + dist(R[i],L[t]));
            if(l <= r) {cover(1,1,l - 1,i);cover(1,r + 1,tot,i);}
            else {cover(1,r + 1,l - 1,i);}
        }
    }
    id = 1;
    build(1,1,tot,0);
    int64 ans = 1e18;
    for(int i = 1 ; i <= N ; ++i) {
        if(B[i] == 1) {
            int l = lower_bound(val + 1,val + tot + 1,L[i]) - val;
            int r = lower_bound(val + 1,val + tot + 1,R[i]) - val;
            int t = query(1,l,l);
            if(t == 0) ans = min(ans,dpL[i]);
            t = query(1,r,r);
            if(t == 0) ans = min(ans,dpR[i]);
            if(l <= r) {cover(1,1,l - 1,i);cover(1,r + 1,tot,i);}
            else {cover(1,r + 1,l - 1,i);}
        }
    }
    ans += 2 * sum[N];
    out(ans);enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
}
相关文章
相关标签/搜索