数据分析领域都有一个经典的入门题目,泰坦尼克号生还者预测。数据集能够去kaggle下载。正则表达式
import pandas as pd import numpy as np import matplotlib.pyplot as plt titanic = pd.read_csv('D:/train.csv') # print(titanic.head()) # print(titanic.describe()) #经过describe发现age数据不完整,须要填充 titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median()) # print(titanic.describe()) # print(titanic['Sex'].unique()) #将字符值转换成数值 titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 #登船地址 # print(titanic['Embarked'].unique()) titanic['Embarked'] = titanic['Embarked'].fillna('S') titanic.loc[titanic['Embarked'] == 'S', 'Embarked'] = 0 titanic.loc[titanic['Embarked'] == 'C', 'Embarked'] = 1 titanic.loc[titanic['Embarked'] == 'Q', 'Embarked'] = 2 #用线性回归来预测 from sklearn.linear_model import LinearRegression from sklearn.cross_validation import KFold predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] alg = LinearRegression() kf = KFold(titanic.shape[0], n_folds=3, random_state=1) #预测结果 predictions = [] #训练集,测试集,交叉验证 for train, test in kf: train_predictors = (titanic[predictors].iloc[train, :]) train_target = titanic['Survived'].iloc[train] #训练数据的X,Y => 让他进行判断 alg.fit(train_predictors, train_target) test_predictions = alg.predict(titanic[predictors].iloc[test, :]) predictions.append(test_predictions) predictions = np.concatenate(predictions, axis=0) predictions[predictions > 0.5] = 1 predictions[predictions <= 0.5] = 0 #进行模型评估 accuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions) # print(accuracy) #用逻辑回归来预测 from sklearn import cross_validation from sklearn.linear_model import LogisticRegression alg = LogisticRegression(random_state=1) scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3) # print(scores.mean()) #用随机森林来作 from sklearn.ensemble import RandomForestClassifier predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] alg = RandomForestClassifier(random_state=1, n_estimators=1000, min_samples_split=8, min_samples_leaf=8) kf = cross_validation.KFold(titanic.shape[0], n_folds=3, random_state=1) scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=kf) print(scores.mean()) #关于特征提取问题 (很是关键) #尽量多的提取特征 #看不一样特征的效果 #特征提取是数据挖掘里很- 要的一部分 #以上使用的特征都是数据里已经有的了,在真实的数据挖掘里咱们经常没有合适的特征,须要咱们本身取提取 #合并数据:本身生成一个特征,家庭成员的大小:兄弟姐妹+老人孩子 titanic['FamilySize'] = titanic['SibSp'] + titanic['Parch'] #名字的长度 titanic['NameLength'] = titanic['Name'].apply(lambda x : len(x)) import re def get_title(name): #使用正则表达式匹配出Mr等 title_search = re.search(' ([A-Za-z]+)\.', name) if title_search: return title_search.group(1) return "" titles = titanic['Name'].apply(get_title) # print(pd.value_counts(titles)) #国外不一样阶层的人都有不一样的称呼 title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Dr": 5, "Rev": 6, "Major": 7, "Col": 7, "Mlle": 8, "Mme": 8, "Don": 9, "Lady": 10, "Countess": 10, "Jonkheer": 10, "Sir": 9, "Capt": 7, "Ms": 2 } for k, v in title_mapping.items(): #将不一样的称呼替换成机器能够计算的数字 titles[titles == k] = v print(pd.value_counts(titles)) titanic['Title'] = titles # 进行特征选择 # 特征重要性分析 # 分析 不一样特征对 最终结果的影响 # 例如 衡量age列的重要程度时,什么也不干,获得一个错误率error1, # 加入一些噪音数据,替换原来的值(注意,此时其余列的数据不变),又获得一个一个错误率error2 # 两个错误率的差值 能够体现这一个特征的重要性 from sklearn.feature_selection import SelectKBest, f_classif import matplotlib.pylab as plt # 选中一些特征 predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', "Embarked", 'FamilySize', 'Title', 'NameLength'] #选择特征 selector = SelectKBest(f_classif, k = 5) selector.fit(titanic[predictors], titanic['Survived']) scores= -np.log10(selector.pvalues_) plt.bar(range(len(predictors)), scores) plt.xticks(range(len(predictors)), predictors, rotation = 'vertical') # plt.show() #经过以上特征重要性分析,选择出4个最重要的特征,从新进行随机森林的算法 predictors = ['Pclass', 'Sex', 'Fare', 'Title'] alg = RandomForestClassifier(random_state=1, n_estimators=100, min_samples_split=8, min_samples_leaf=8) kf = cross_validation.KFold(titanic.shape[0], n_folds=3, random_state=1) scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=kf) print(scores.mean()) #能够使用多种算法一块儿来训练,最后取平均值防止过拟合 from sklearn.ensemble import GradientBoostingClassifier algorithms = [ [LogisticRegression(random_state=1), ['Pclass', 'Sex', 'Fare', 'Title']], [RandomForestClassifier(random_state=1, n_estimators=100, min_samples_split=8, min_samples_leaf=8), ['Pclass', 'Sex', 'Fare', 'Title']] ] # Initialize the cross validation folds kf = KFold(titanic.shape[0], n_folds=3, random_state=1) predictions = [] for train, test in kf: train_target = titanic['Survived'].iloc[train] full_test_predictions = [] # Make predictions for each algorithm on each folds for alg, predictors in algorithms: # Fit the algorithm on the training data. alg.fit(titanic[predictors].iloc[train, :], train_target) # Select and predict on the test fold. # The astype(float) is necessary to convert the dataframe test_predictions = alg.predict_proba(titanic[predictors].iloc[test, :].astype(float))[:, 1] full_test_predictions.append(test_predictions) # Use a simple ensembling scheme - just average the predictions to get the final classification # 两个算法, 分别算出来的 预测值, 取平均 test_predictions = (full_test_predictions[0] * 3 + full_test_predictions[1]) / 2 # Any value over 5 is assumed to be a 1 prediction, and below 5 is a 0 prediction test_predictions[test_predictions <= 0.5] = 0 test_predictions[test_predictions > .5] = 1 predictions.append(test_predictions) # Put all the predictions together into one array predictions = np.concatenate(predictions, axis=0) accuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions) print(accuracy)