Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统python
专一于实时处理的异步任务队列web
同时也支持任务调度redis
celery架构
django
Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成。windows
Celery自己不提供消息服务,可是能够方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis等等。架构
Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。并发
app
Celery version 4.0 runs on
Python ❨2.7, 3.4, 3.5❩
PyPy ❨5.4, 5.5❩
This is the last version to support Python 2.7, and from the next version (Celery 5.x) Python 3.5 or newer is required.
If you’re running an older version of Python, you need to be running an older version of Celery:
Python 2.6: Celery series 3.1 or earlier.
Python 2.5: Celery series 3.0 or earlier.
Python 2.4 was Celery series 2.2 or earlier.
Celery is a project with minimal funding, so we don’t support Microsoft Windows. Please don’t open any issues related to that platform.异步
2、使用场景
async
异步任务:将耗时操做任务提交给Celery去异步执行,好比发送短信/邮件、消息推送、音视频处理等等
定时任务:定时执行某件事情,好比天天数据统计
pip install celery
消息中间件:RabbitMQ/Redis
app=Celery('任务名',backend='xxx',broker='xxx')
4、
import celery import time # broker='redis://127.0.0.1:6379/2' 不加密码 backend='redis://:123456@127.0.0.1:6379/1' broker='redis://:123456@127.0.0.1:6379/2' cel=celery.Celery('test',backend=backend,broker=broker) @cel.task def add(x,y): return x+y
建立py文件:add_task.py,添加任务
from celery_app_task import add result = add.delay(4,5) print(result.id)
注:windows下:celery worker -A celery_app_task -l info -P eventlet
from celery_app_task import cel if __name__ == '__main__': cel.worker_main() # cel.worker_main(argv=['--loglevel=info')
建立py文件:result.py,查看任务执行结果
from celery.result import AsyncResult from celery_app_task import cel async = AsyncResult(id="e919d97d-2938-4d0f-9265-fd8237dc2aa3", app=cel) if async.successful(): result = async.get() print(result) # result.forget() # 将结果删除 elif async.failed(): print('执行失败') elif async.status == 'PENDING': print('任务等待中被执行') elif async.status == 'RETRY': print('任务异常后正在重试') elif async.status == 'STARTED': print('任务已经开始被执行')
执行 add_task.py,添加任务,并获取任务ID
执行 run.py ,或者执行命令:celery worker -A celery_app_task -l info
执行 result.py,检查任务状态并获取结果
pro_cel ├── celery_task# celery相关文件夹 │ ├── celery.py # celery链接和配置相关文件,必须叫这个名字 │ └── tasks1.py # 全部任务函数 │ └── tasks2.py # 全部任务函数 ├── check_result.py # 检查结果 └── send_task.py # 触发任务
celery.py
from celery import Celery cel = Celery('celery_demo', broker='redis://127.0.0.1:6379/1', backend='redis://127.0.0.1:6379/2', # 包含如下两个任务文件,去相应的py文件中找任务,对多个任务作分类 include=['celery_task.tasks1', 'celery_task.tasks2' ]) # 时区 cel.conf.timezone = 'Asia/Shanghai' # 是否使用UTC cel.conf.enable_utc = False
tasks1.py
import time from celery_task.celery import cel @cel.task def test_celery(res): time.sleep(5) return "test_celery任务结果:%s"%res
tasks2.py
import time from celery_task.celery import cel @cel.task def test_celery2(res): time.sleep(5) return "test_celery2任务结果:%s"%res
check_result.py
from celery.result import AsyncResult from celery_task.celery import cel async = AsyncResult(id="08eb2778-24e1-44e4-a54b-56990b3519ef", app=cel) if async.successful(): result = async.get() print(result) # result.forget() # 将结果删除,执行完成,结果不会自动删除 # async.revoke(terminate=True) # 不管如今是何时,都要终止 # async.revoke(terminate=False) # 若是任务尚未开始执行呢,那么就能够终止。 elif async.failed(): print('执行失败') elif async.status == 'PENDING': print('任务等待中被执行') elif async.status == 'RETRY': print('任务异常后正在重试') elif async.status == 'STARTED': print('任务已经开始被执行')
send_task.py
from celery_task.tasks1 import test_celery from celery_task.tasks2 import test_celery2 # 当即告知celery去执行test_celery任务,并传入一个参数 result = test_celery.delay('第一个的执行') print(result.id) result = test_celery2.delay('第二个的执行') print(result.id)
添加任务(执行send_task.py),开启work:celery worker -A celery_task -l info -P eventlet,检查任务执行结果(执行check_result.py)
5、celery执行定时任务
from celery_app_task import add from datetime import datetime # 方式一 # v1 = datetime(2019, 2, 13, 18, 19, 56) # print(v1) # v2 = datetime.utcfromtimestamp(v1.timestamp()) # print(v2) # result = add.apply_async(args=[1, 3], eta=v2) # print(result.id) # 方式二 ctime = datetime.now() # 默认用utc时间 utc_ctime = datetime.utcfromtimestamp(ctime.timestamp()) from datetime import timedelta time_delay = timedelta(seconds=10) task_time = utc_ctime + time_delay # 使用apply_async并设定时间 result = add.apply_async(args=[4, 3], eta=task_time) print(result.id)
多任务结构中celery.py修改以下
from datetime import timedelta from celery import Celery from celery.schedules import crontab cel = Celery('tasks', broker='redis://127.0.0.1:6379/1', backend='redis://127.0.0.1:6379/2', include=[ 'celery_task.tasks1', 'celery_task.tasks2', ]) cel.conf.timezone = 'Asia/Shanghai' cel.conf.enable_utc = False cel.conf.beat_schedule = { # 名字随意命名 'add-every-10-seconds': { # 执行tasks1下的test_celery函数 'task': 'celery_task.tasks1.test_celery', # 每隔2秒执行一次 # 'schedule': 1.0, # 'schedule': crontab(minute="*/1"), 'schedule': timedelta(seconds=2), # 传递参数 'args': ('test',) }, # 'add-every-12-seconds': { # 'task': 'celery_task.tasks1.test_celery', # 每一年4月11号,8点42分执行 # 'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4), # 'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4), # 'args': (16, 16) # }, }
启动一个beat:celery beat -A celery_task -l info
6、django中使用celery
在项目目录下建立celeryconfig.py
import djcelery djcelery.setup_loader() CELERY_IMPORTS=( 'app01.tasks', ) #有些状况能够防止死锁 CELERYD_FORCE_EXECV=True # 设置并发worker数量 CELERYD_CONCURRENCY=4 #容许重试 CELERY_ACKS_LATE=True # 每一个worker最多执行100个任务被销毁,能够防止内存泄漏 CELERYD_MAX_TASKS_PER_CHILD=100 # 超时时间 CELERYD_TASK_TIME_LIMIT=12*30
在app01目录下建立tasks.py
from celery import task @task def add(a,b): with open('a.text', 'a', encoding='utf-8') as f: f.write('a') print(a+b)
视图函数views.py
from django.shortcuts import render,HttpResponse from app01.tasks import add from datetime import datetime def test(request): # result=add.delay(2,3) ctime = datetime.now() # 默认用utc时间 utc_ctime = datetime.utcfromtimestamp(ctime.timestamp()) from datetime import timedelta time_delay = timedelta(seconds=5) task_time = utc_ctime + time_delay result = add.apply_async(args=[4, 3], eta=task_time) print(result.id) return HttpResponse('ok')
settings.py
INSTALLED_APPS = [ ... 'djcelery', 'app01' ] ... from djagocele import celeryconfig BROKER_BACKEND='redis' BOOKER_URL='redis://127.0.0.1:6379/1' CELERY_RESULT_BACKEND='redis://127.0.0.1:6379/2'