DevOpsSOP 基于阿里云VPC搭建Storm+Kafka+Zookeeper集群

目标网络拓扑结构

集群搭建之 zookeeper + kafka

环境要求 pre-installhtml

zookeeper cluster

  1. 下载安装 zk
# 0. 设置集群hosts,方便后续配置
vim /etc/hosts
    172.1.1.1  Data_Center_ZK_1
    172.1.1.2  Data_Center_ZK_2
    172.1.1.3  Data_Center_ZK_3

# 1. unpack and cd to the root
tar xzf zookeeper-3.4.10.tar.gz && cd zookeeper-3.4.10

# 2. 配置单机 zk,此处仅作参考
# cp conf/zoo_sample.cfg conf/zoo.cfg
# vim conf/zoo.cfg
# tickTime=2000
# initLimit=10
# syncLimit=5
# dataDir=/opt/data/zookeeper
# clientPort=2181
# maxClientCnxns=60
# autopurge.snapRetainCount=3
# autopurge.purgeInterval=24
# 2. 配置集群 zk 
# 注意,zk集群的 server id 不能相同
vim /opt/data/zookeeper/myid # 指定每台zk服务器的id, 例如:一、二、3
cp conf/zoo_sample.cfg conf/zoo.cfg
vim conf/zoo.cfg 
    tickTime=2000
    initLimit=10
    syncLimit=5
    dataDir=/opt/data/zookeeper
    clientPort=2181
    maxClientCnxns=60
    autopurge.purgeInterval=24
    server.1=Data_Center_ZK_1:2888:3888
    server.2=Data_Center_ZK_2:2888:3888
    server.3=Data_Center_ZK_3:2888:3888
    
# 3. 配置 Java heap size (2G/4G) 
# 注意,应尽可能避免zk使用swap,性能会有大幅降级
# 此处,在总内存为4G的状况下,指定zk初始jvm内存大小为512M,最大为2G
vim conf/java.env
    export JVMFLAGS="-Xmx2048m -Xms512m"
    
# 4. 启动服务 
bin/zkServer.sh start
# bin/zkServer.sh stop
bin/zkServer.sh status

# 以上步骤须要在三台server上分别配置
# 5. 客户端链接测试集群可用性
bin/zkCli.sh -server Data_Center_ZK_1:2181
    help
    ls /
    create /test "hello world!"
    get /test
bin/zkCli.sh -server Data_Center_ZK_3:2181    
    help
    ls /
    get /test
复制代码
  1. 参考资料

kafka cluster

  1. 下载安装 kafka
# 0. 设置集群hosts,方便后续配置
vim /etc/hosts
    172.1.1.1  Data_Center_Kafka_1
    172.1.1.2  Data_Center_Kafka_2
    172.1.1.3  Data_Center_Kafka_3
    
# 1. unpack
tar xzf kafka_2.11-1.0.0.tgz
cd kafka_2.11-1.0.0

# 2. 集群配置
# Kafka uses ZooKeeper. 确保zookeeper环节已经成功启动服务
vim config/server.properties
    # The id of the broker. 3台server配置不一样的broker id
    broker.id=1
    # Zookeeper connection string
    zookeeper.connect=Data_Center_ZK_1:2181,Juliye_Data_Center_ZK_2:2181,Juliye_Data_Center_ZK_3:2181
    # 配置socket server
    advertised.host.name=Data_Center_Kafka_1
    advertised.port=9092

# 3. 启动服务
bin/kafka-server-start.sh 
# bin/kafka-server-stop.sh

# 以上步骤须要在三台server上分别配置
# 4. 客户端链接测试
# 查看全部 topic
bin/kafka-topics.sh --list --zookeeper Data_Center_ZK_1:2181
# 建立 topic
bin/kafka-topics.sh --create --zookeeper Data_Center_ZK_1:2181 --replication-factor 3 --partitions 1 --topic my-replicated-topic
# Run the producer and then type a few messages into the console to send to the server.
bin/kafka-console-producer.sh --broker-list Data_Center_Kafka_1:9092 --topic my-replicated-topic
# Start a consumer
bin/kafka-console-consumer.sh --bootstrap-server Data_Center_Kafka_2:9092 --topic my-replicated-topic --from-beginning
# 查看多副本topic的状态
bin/kafka-topics.sh --describe --zookeeper Juliye_Data_Center_ZK_1:2181 --topic  my-replicated-topic
# 输出对应集群状态
# Topic: my-replicated-topic Partition: 0 Leader: 1 Replicas: 1,2,0 Isr: 0,2,1

# 5. 查看zk中kafka的状态信息
/opt/tools/zookeeper-3.4.10/bin/zkCli.sh -server Data_Center_ZK_1:2181
    help
    ls /
    ls /brokers
    ls /consumers
    ls /config

复制代码
  1. 参考资料

集群高可用

  1. 使用supervisor守护应用服务
    • Supervisor安装参考
    • 配置supervisor
    # Add Configs: Add Zookeeper and Kafka deamon 
    vim /etc/supervisord.conf
    
        [program:zookeeper]
        ;command=/opt/tools/zookeeper-3.4.10/bin/zkServer.sh start
        command=/opt/tools/zookeeper-3.4.10/bin/zkServer.sh start-foreground
    
        [program:kafka]
        ;command=/opt/tools/kafka_2.11-1.0.0/bin/kafka-server-start.sh
        command=/opt/tools/kafka_2.11-1.0.0/bin/kafka-server-start.sh /opt/tools/kafka_2.11-1.0.0/config/server.properties
        
    # 启动 
    supervisord -c /etc/supervisord.conf
    # 查看状态
    supervisorctl status all
    复制代码
  2. 使用systemd守护supervisor,并设置开机启动,参考

集群搭建之 zookeeper + storm

环境要求 pre-installjava

zookeeper集群搭建参考本章第一部分node

storm cluster

  1. Strom安装注意事项
    • Storm uses Zookeeper for coordinating the cluster.
    • Single node Zookeeper clusters should be sufficient for most cases
    • It's critical that you run Zookeeper under supervision
    • It's critical that you set up a cron to compact Zookeeper's data and transaction logs.
  2. Install dependencies on Nimbus and worker machines
  3. 安装配置
# 0. 设置集群hosts,方便后续配置
vim /etc/hosts
    172.1.1.1  Data_Center_Storm_1
    172.1.1.2  Data_Center_Storm_2
    172.1.1.3  Data_Center_Storm_3
mkdir -p /opt/data/storm

# 1. Download and extract a Storm release to Nimbus and worker machines
tar xzf storm-1.2.1.tar.gz -C /etc/tools/ 
cd /etc/tools/storm-1.2.1

# 2. Fill in mandatory configurations into storm.yaml
vim conf/storm.yaml
    storm.local.dir: "/opt/data/storm"
    storm.zookeeper.servers:
        - "Data_Center_ZK_1"
        - "Data_Center_ZK_2"
        - "Data_Center_ZK_3 nimbus.seeds : ["Data_Center_Storm_1"] drpc.servers: - "Data_Center_Storm_1" #- "Data_Center_Storm_2" #- "Data_Center_Storm_3" drpc.port: 3772 # 其它配置都默认 # 3. Launch daemons under supervision using "storm" script and a supervisor of your choice # 在Storm-1上启动 nimbus、supervisor、ui nohup storm nimbus & nohup storm supervisor & nohup storm ui & nohup storm drpc & # 在Storm-二、Storm-3上启动 supervisor nohup storm supervisor & # 启动成功后能够经过 # http://Data_Center_Storm_1:8080 # 来查看storm集群状态 复制代码

集群高可用

  1. 使用supervisor守护应用服务
    • Supervisor安装参考
    • 配置supervisor
    # Add Configs: Storm-Supervisor | Storm-UI | Storm-Nimbus
    # 注意 UI和Nimbus仅在节点1上设置
    vim /etc/supervisord.conf
    
        [program:storm_nimbus]
        ;nohup storm nimbus &
        command=/opt/tools/apache-storm-1.2.1/bin/storm nimbus
    
        [program:storm_supervisor]
        ;nohup storm supervisor &
        command=/opt/tools/apache-storm-1.2.1/bin/storm supervisor
    
        [program:storm_ui]
        ;nohup storm ui &
        command=/opt/tools/apache-storm-1.2.1/bin/storm ui
        
        [program:storm_drpc]
        ;nohup storm drpc &
        command=/opt/tools/apache-storm-1.2.1/bin/storm drpc
        
    # 启动 
    supervisord -c /etc/supervisord.conf
    # 查看状态
    supervisorctl status all
    复制代码
  2. 使用systemd守护supervisor,并设置开机启动,参考

集群测试 zookeeper + kafka + storm

配置客户端的开发环境

# 0. 解压发行版storm
tar xzf software/apache-storm-1.2.1.tar.gz -C tools/
# 1. 配置环境
vim /etc/profile.d/global_ops_cmd.sh
    export JAVA_HOME="/usr/java/jdk1.8.0_161"
    export MVN_HOME="/opt/tools/apache-maven-3.5.2"
    export STORM_HOME="/opt/tools/apache-storm-1.2.1"

    export PATH="$PATH:$STORM_HOME/bin:$MVN_HOME/bin"
. /etc/profile.d/global_ops_cmd.sh

# 2. 配置远程集群信息,指定nimbus服务器节点
# Config cluster information, 
# The local Storm configs are the ones in ~/.storm/storm.yaml merged in with the configs in defaults.yaml
vim ~/.storm/storm.yaml
    nimbus.seeds: ["Data_Center_Storm_1"]

# 3. 查看集群topology状态 
storm list
# 若是不在本地配置,能够以命令行参数形式传递
# storm list -c nimbus.host=Data_Center_Storm_1

# 4. Storm 客户端其它经常使用命令
storm kill topology-name [-w wait-time-secs]
storm activate topology-name
storm deactivate topology-name
storm jar topology-jar-path class ...

# 5. 获取最新代码 Git clone repo
# release 版本中的代码
cd /opt/apps
git clone git://github.com/apache/storm.git 

复制代码

Run storm-starter examples

# Root dir
cd /opt/apps/storm/

# 1. 切换至你须要的代码版本,避免不一样版本实例可能形成的问题
# 因为此处storm集群的版本为1.2.1,因此此处咱们切换到对应版本代码
git tag
git checkout tags/v1.2.1
cd /opt/apps/storm/examples/storm-starter

mvn clean package

# Run the WordCountTopology in remote/cluster mode, 
storm jar target/storm-starter-*.jar org.apache.storm.starter.WordCountTopology WordCountProduction remote

# Run the RollingTopWords in remote/cluster mode, 
# under the name "production-topw-1"
storm jar target/storm-starter-*.jar org.apache.storm.starter.RollingTopWords production-topw-1 remote

复制代码

Run storm-kafka-client examples

# 1. 切换至你须要的代码版本,避免不一样版本实例可能形成的问题
# 因为此处storm集群的版本为1.2.1,因此此处咱们切换到对应版本代码
git tag
git checkout tags/v1.2.1
cd examples/storm-kafka-client-examples/

# 2. 修改工程依赖关系
# 须要明确指定scope为compile,不然可能会出现相似于NoClassDefFoundError的错误
vim ./pom.xml
        <dependency>
            <groupId>org.apache.storm</groupId>
            <artifactId>storm-kafka-client</artifactId>
            <version>${project.version}</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>${storm.kafka.artifact.id}</artifactId>
            <version>${storm.kafka.client.version}</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>${storm.kafka.client.version}</version>
            <scope>compile</scope>
        </dependency>

# 3. 修改该版本代码
vim src/main/java/org/apache/storm/kafka/trident/TridentKafkaClientWordCountNamedTopics.java
        // # 更新原有方法newKafkaTridentSpoutOpaque参数列表,以下:
        private KafkaTridentSpoutOpaque<String, String> newKafkaTridentSpoutOpaque(String broker, String topic1, String topic2) { //...
        // # 更新原有方法newKafkaSpoutConfig参数列表,以下:
        protected KafkaSpoutConfig<String,String> newKafkaSpoutConfig(String broker, String topic1, String topic2) { //...
        
        //# 原有代码,默认为local模式
        //# DrpcResultsPrinter.remoteClient().printResults(60, 1, TimeUnit.SECONDS);
        //# 若是remote模式运行,须要替换成以下:
        Thread.sleep(2000);
        Config drpc = new Config();
        drpc.setDebug(false);
        drpc.put("storm.thrift.transport", "org.apache.storm.security.auth.SimpleTransportPlugin");//"backtype.storm.security.auth.SimpleTransportPlugin");
        drpc.put(Config.STORM_NIMBUS_RETRY_TIMES, 3);
        drpc.put(Config.STORM_NIMBUS_RETRY_INTERVAL, 10);
        drpc.put(Config.STORM_NIMBUS_RETRY_INTERVAL_CEILING, 20);
        drpc.put(Config.DRPC_MAX_BUFFER_SIZE, 1048576);
        System.out.printf("drpc config: %s \n", drpc);
        try {
            DrpcResultsPrinter client = DrpcResultsPrinter.remoteClient(drpc, "Juliye_Data_Center_Storm_1", 3772);
            System.out.printf("client: %s \n", client);
            client.printResults(60, 1, TimeUnit.SECONDS);
        }catch (Exception e) {
            e.printStackTrace();
        }finally {
            System.out.printf("finally \n");
        }
            
# 4. 使用 maven 打包
# 根据当前kafka版本指定两个参数:kafka_artifact_id、kafka_broker_version
# mvn clean package -Dstorm.kafka.artifact.id=<kafka_artifact_id> -Dstorm.kafka.client.version=<kafka_broker_version>
# 此处安装的版本为 kafka_2.11-1.0.0
mvn clean package -Dstorm.kafka.artifact.id=kafka_2.11 -Dstorm.kafka.client.version=1.0.0

# 5. 上传storm topology
# 注意后面4个参数 分别是: 
# 指定kafka节点;指定拓扑1的名称(用于生产msg数据);指定拓扑2的名称(用于生产msg数据);指定远程执行(非local模式)
storm jar target/storm-kafka-client-examples-1.2.1.jar org.apache.storm.kafka.trident.TridentKafkaClientWordCountNamedTopics Data_Center_Kafka_2:9092 kafka-prod-1 kafka-prod-2 remote
# storm -c nimbus.host=Juliye_Data_Center_Storm_1 jar target/storm-kafka-client-examples-1.2.1.jar org.apache.storm.kafka.trident.TridentKafkaClientWordCountNamedTopics
复制代码
可能遇到的异常:
#
#
# 1. 依赖问题,没法找到部分依赖
# Error: A JNI error has occurred, please check your installation and try again
# Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/storm/kafka/...
# 参考上方第2步设置


# 2. kafka producer 没法写入问题
# org.apache.kafka.common.errors.TimeoutException: Failed to update metadata after 60000 ms. 
# org.apache.kafka.common.errors.TimeoutException: Timeout expired while fetching topic metadata
# 注意修改kafka配置
vim config/server.properties
    # 配置socket server
    advertised.host.name=Data_Center_Kafka_1
    advertised.port=9092


# 3. kafka consumer 没法drpc链接问题
# java.lang.RuntimeException: 
# No DRPC servers configured for topology at org.apache.storm.drpc.DRPCSpout.open(DRPCSpout.java:149) at org.apache.storm.trident.spout.RichSpoutBatchTriggerer.open(RichSpo 
1. 启动drpc server
vim /opt/tools/apache-storm-1.2.1/conf/storm.yaml
    drpc.servers:
        - "Juliye_Data_Center_Storm_1"
        #- "Juliye_Data_Center_Storm_2"
        #- "Juliye_Data_Center_Storm_3"
    drpc.port: 3772
2. 配置代码中的链接
vim src/main/java/org/apache/storm/kafka/trident/TridentKafkaClientWordCountNamedTopics.java
    Thread.sleep(2000);
    Config drpc = new Config();
    drpc.setDebug(false);
    drpc.put("storm.thrift.transport", "org.apache.storm.security.auth.SimpleTransportPlugin");//"backtype.storm.security.auth.SimpleTransportPlugin");
    drpc.put(Config.STORM_NIMBUS_RETRY_TIMES, 3);
    drpc.put(Config.STORM_NIMBUS_RETRY_INTERVAL, 10);
    drpc.put(Config.STORM_NIMBUS_RETRY_INTERVAL_CEILING, 20);
    drpc.put(Config.DRPC_MAX_BUFFER_SIZE, 1048576);
    System.out.printf("drpc config: %s \n", drpc);
    try {
        DrpcResultsPrinter client = DrpcResultsPrinter.remoteClient(drpc, "Juliye_Data_Center_Storm_1", 3772);
        System.out.printf("client: %s \n", client);
        client.printResults(60, 1, TimeUnit.SECONDS);
    }catch (Exception e) {
        e.printStackTrace();
    }finally {
        System.out.printf("finally \n");
    }

复制代码

更多参考

相关文章
相关标签/搜索