1、pandas简单介绍正则表达式
一、pandas是一个强大的Python数据分析的工具包。
二、pandas是基于NumPy构建的。算法
三、pandas的主要功能数据库
四、安装方法:pip install pandas
五、引用方法:import pandas as pdjson
2、Series数组
Series是一种相似于一维数组的对象,由一组数据和一组与之相关的数据标签(索引)组成。数据结构
建立方式: pd.Series([4,7,-5,3]) pd.Series([4,7,-5,3],index=['a','b','c','d']) pd.Series({'a':1, 'b':2}) pd.Series(0, index=['a','b','c','d’])
3、Series特性app
Series支持数组的特性:dom
统计函数:函数
Series支持字典的特性(标签):工具
In [12]: s = pd.Series(0,index=['a','b','c','d']) In [13]: s.a Out[13]: 0 In [14]: v = pd.Series({'a':1,'b':2}) In [15]: v.a Out[15]: 1 In [16]: v.b Out[16]: 2 In [17]: v[0] Out[17]: 1 In [18]: s*2 Out[18]: a 0 b 0 c 0 d 0 dtype: int64 In [19]: v*2 Out[19]: a 2 b 4 dtype: int64
4、整数索引
例:
若是索引是整数类型,则根据整数进行数据操做时老是面向标签的。
5、pandas:Series数据对齐
pandas在运算时,会按索引进行对齐而后计算。若是存在不一样的索引,则结果的索引是两个操做数索引的并集。 例: sr1 = pd.Series([12,23,34], index=['c','a','d']) sr2 = pd.Series([11,20,10], index=['d','c','a',]) sr1+sr2 sr3 = pd.Series([11,20,10,14], index=['d','c','a','b']) sr1+sr3 如何在两个Series对象相加时将缺失值设为0? sr1.add(sr2, fill_value=0) 灵活的算术方法:add, sub, div, mul
6、pandas:Series缺失数据
一、缺失数据:使用NaN(Not a Number)来表示缺失数据。其值等于np.nan。内置的None值也会被当作NaN处理。
二、处理缺失数据的相关方法:
三、过滤缺失数据:sr.dropna() 或 sr[data.notnull()]
四、填充缺失数据:fillna(0)
7、pandas:DataFrame
DataFrame是一个表格型的数据结构,含有一组有序的列。
DataFrame能够被看作是由Series组成的字典,而且共用一个索引。
建立方式:
csv文件读取与写入:
8、pandas:DataFrame查看数据
查看数据经常使用属性及方法:
index 获取索引
T 转置
columns 获取列索引
values 获取值数组
describe() 获取快速统计
DataFrame各列name属性:列名
rename(columns={})
9、pandas:DataFrame索引和切片
一、DataFrame有行索引和列索引。
二、DataFrame一样能够经过标签和位置两种方法进行索引和切片。
三、DataFrame使用索引切片:
loc属性:解释为标签
iloc属性:解释为下标
向DataFrame对象中写入值时只使用方法2
行/列索引部分能够是常规索引、切片、布尔值索引、花式索引任意搭配。(注意:两部分都是花式索引时结果可能与预料的不一样)
经过标签获取: df['A'] df[['A', 'B']] df['A'][0] df[0:10][['A', 'C']] df.loc[:,['A','B']] #行是全部的行,列取是A和B的 df.loc[:,'A':'C'] df.loc[0,'A'] df.loc[0:10,['A','C']] 经过位置获取: df.iloc[3] df.iloc[3,3] df.iloc[0:3,4:6] df.iloc[1:5,:] df.iloc[[1,2,4],[0,3]]、 经过布尔值过滤: df[df['A']>0] df[df['A'].isin([1,3,5])] df[df<0] = 0
10、pandas:DataFrame数据对齐与缺失数据
DataFrame对象在运算时,一样会进行数据对齐,行索引与列索引分别对齐。
结果的行索引与列索引分别为两个操做数的行索引与列索引的并集。
DataFrame处理缺失数据的相关方法:
11、pandas:其余经常使用方法
- mean #求平均值 - sum #求和 - sort_index #按行或列索引排序 - sort_values #按值排序 - apply(func,axis=0) #axis=0指的是逐行,axis=1指的是逐列。 df.apply(lamada x:x.mean()) #按列求平均 df.apply(lamada x:x['high']+x["low"])/2,axis=1) #按列求平均(最高价和最低价的平均) df.apply(lamada x:x['high']+x["low"])/2,axis=1) #按列求平均(最高价和最低价的平均) - applymap(func) #将函数应用在DataFrame各个元素上 - map(func) #将函数应用在Series各个元素上
12、pandas:时间对象处理
时间序列类型: 时间戳:特定时刻 固定时期:如2017年7月 时间间隔:起始时间-结束时间 Python标准库:datetime datetime.datetime.timedelta # 表示 时间间隔 dt.strftime() #f:format吧时间对象格式化成字符串 strptime() #吧字符串解析成时间对象p:parse 灵活处理时间对象:dateutil包 dateutil.parser.parse('2018/1/29') 成组处理时间对象:pandas pd.to_datetime(['2001-01-01', '2002-02-02'])
产生时间对象数组:date_range
十3、pandas:时间序列
一、时间序列就是以时间对象为索引的Series或DataFrame。
二、datetime对象做为索引时是存储在DatetimeIndex对象中的。
三、时间序列特殊功能:
十4、pandas:从文件读取
二、读取文件函数主要参数:
df = pd.read_csv("601318.csv") #默认以,为分隔符 - pd.read_csv("601318.csv",sep='\s+') #匹配空格,支持正则表达式 - pd.read_table("601318.csv",sep=',') #和df = pd.read_csv("601318.csv") 同样 - pd.read_excle("601318.xlsx") #读Excel文件 sep:指定分隔符 header = NOne,就会吧默认的表名去除 了 df.rename(column={0:'a',1:"b"}) #修改列名 pd.read_csv(index_col=0) #第0列 若是想让时间成为索引 pd.read_csv(index_col='date') #时间列 pd.read_csv(index_col='date',parse_datas=True) #时间列 parse_datas转换为时间对象,设为true是吧全部能转的都转 pd.read_csv(index_col='date',parse_datas=['date']) #知识吧date的那一列转换成时间对象 na_values=['None'] #吧表里面为None的转换成NaN,是吧字符串转换成缺失值 na_rep() #是吧缺失值nan转换成字符串 cols #指定输出的列,传入列表
十5、pandas:写入到文件
一、写入到文件:
二、写入文件函数的主要参数:
三、其余文件类型:json, XML, HTML, 数据库
四、pandas转换为二进制文件格式(pickle):
十6、pandas:数据分组与聚合
分组 df = pd.DateFrame({ 'data1':np.random.uniform(10,20,5), 'data2':np.random.uniform(-10,10,5), 'key1':list("sbbsb") 'key2': }) df.groupby('key1').mean() #作平均 df.groupby('key1').sum() #作平均 df.groupby(['key1','key2']).mean() #作平均 支持分层索引,按多列分组 df.groupby(len).mean() #传一个函数的时候,x是每个行的索引 df.groupby(lambda x:len(x)).mean() #传一个函数的时候,x是每个行的索引 df.groupby.groups() #取得多有的组 df.groupby.get_group() #取得一个组 聚合 df.groupby('key1').max()[['data1','data2']] #去掉key2的data1,data2,花式索引 df.groupby('key1').max()[['data1','data2']]- df.groupby('key1').min()[['data1','data2']] #去掉key2 df.groupby('key1').agg(lamada x:x.max()-x.min()) 既想看最大也可看最小 df.groupby('key1').agg([np.max,np.min]) 不一样的列不同的聚合 df.groupby('key1').agg({'data1':'min','data2':'max'}) #键是列名,值是 a=_219 #219行的代码 a.resample('3D'),mean() #3D 3天,3M就是三周 数据合并 - 数据拼接 df = df.copy() pd.concat([df,df2,df3],ignore_index=True) #不用以前的索引, pd.concat([df,df2,df3],axis=1) #列 pd.concat([df,df2,df3],keys=['a','b','c']) #不用以前的索引, df2.appeng(df3) - 数据链接 若是不指定on,默认是行索引进行join pd.merge(df,df3,on='key1') pd.merge(df,df3,on='['key1','key2'])