一、下载hadoop-eclipse-plugin-2.7.3插件,并解压java
二、将hadoop-eclipse-plugin-2.7.3.jar拷贝到${ECLIPSE_HOME}下的plugins文件夹,apache
并重启eclipse,便可出现如下视图:windows
三、将hadoop-eclipse-plugin-2.7.3下的bin目录全部文件拷贝到window下的Hadoop目录下的bin目录中bash
四、同时将bin目录下的hadoop.dll拷贝到C:\windows\system32目录下app
五、eclipse配置hadoop安装目录eclipse
六、建立Hadoop Locationoop
七、运行WordCount实例spa
1. 建立输入目录input,并上传数据文件input.txt,不可建立输出文件夹,否则会报错。插件
2. 配置运行参数(以下图),最后点击run便可code
说明:input指的的文件夹,直接挂在"/"目录下,与hdfs://192.168.241.129:9000/input对应
3. 输入结果以下图
4. 附:WordCount.java源码
package com.hadoop.example; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { System.setProperty("HADOOP_USER_NAME", "root"); System.setProperty("hadoop.home.dir", "D:/install/hadoop-2.7.3"); // System.setProperty("yarn.resourcemanager.address", "master:8032"); System.setProperty("yarn.resourcemanager.hostname", "master"); Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args) .getRemainingArgs(); if (otherArgs.length < 2) { System.err.println("Usage: wordcount <in> [<in>...] <out>"); System.exit(2); } Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); for (int i = 0; i < otherArgs.length - 1; ++i) { FileInputFormat.addInputPath(job, new Path(otherArgs[i])); } FileOutputFormat.setOutputPath(job, new Path( otherArgs[otherArgs.length - 1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
五、可打成Runnable JarFile包运行
#可运行包执行命令:hadoop jar {jar} {input} {output} hadoop jar WordCount.jar hdfs://192.168.241.129:9000/input hdfs://192.168.241.129:9000/output