JavaShuo
栏目
标签
An End-to-End Approach to Natural Language Object Retrieval via Context-Aware Deep Reinforcement Lea
时间 2021-01-02
原文
原文链接
An End-to-End Approach to Natural Language Object Retrieval via Context-Aware Deep Reinforcement Learning 这篇文章的核心就是使用使用强化学习的观点,在图像西红找出最合适的物体边框。强化学习的核心是在不同的状态下执行不同
>>阅读原文<<
相关文章
1.
An End-to-End Approach to Natural Language Object Retrieval via Context-Aware Deep RL
2.
Deep Reinforcement Learning with a Natural Language Action Space
3.
An Information Retrieval Approach to Short Text Conversation
4.
CS224d: Deep Learning for Natural Language Process
5.
Natural Language Processing[论文合集]
6.
Image Denoising via CNNs: An Adversarial Approach
7.
Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering
8.
Language Understanding for TextGames using Deep Reinforcement
9.
论文笔记:Learning how to Active Learn: A Deep Reinforcement Learning Approach
10.
A Unified Game-Theoretic Approach to Multi-agent Reinforcement Learning
更多相关文章...
•
RSS
元素
-
RSS 教程
•
XSL-FO instream-foreign-object 对象
-
XSL-FO 教程
•
YAML 入门教程
•
为了进字节跳动,我精选了29道Java经典算法题,带详细讲解
相关标签/搜索
language
natural
lea
retrieval
reinforcement
approach
deep
object...object
object
to@8
MyBatis教程
Hibernate教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
1.2 Illustrator多文档的几种排列方式
2.
5.16--java数据类型转换及杂记
3.
性能指标
4.
(1.2)工厂模式之工厂方法模式
5.
Java记录 -42- Java Collection
6.
Java记录 -42- Java Collection
7.
github使用
8.
Android学习笔记(五十):声明、请求和检查许可
9.
20180626
10.
服务扩容可能引入的负面问题及解决方法
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
An End-to-End Approach to Natural Language Object Retrieval via Context-Aware Deep RL
2.
Deep Reinforcement Learning with a Natural Language Action Space
3.
An Information Retrieval Approach to Short Text Conversation
4.
CS224d: Deep Learning for Natural Language Process
5.
Natural Language Processing[论文合集]
6.
Image Denoising via CNNs: An Adversarial Approach
7.
Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering
8.
Language Understanding for TextGames using Deep Reinforcement
9.
论文笔记:Learning how to Active Learn: A Deep Reinforcement Learning Approach
10.
A Unified Game-Theoretic Approach to Multi-agent Reinforcement Learning
>>更多相关文章<<