# -*- coding: utf-8 -*- from sqlalchemy import * from sqlalchemy.orm import ( scoped_session, sessionmaker, relationship, backref ) from sqlalchemy.ext.declarative import declarative_base # mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> engine = create_engine("mysql+mysqlconnector://root:@localhost:3306/demo", convert_unicode=True) session = scoped_session(sessionmaker( autocommit=False, autoflush=False, bind=engine )) Base = declarative_base() Base.query = session.query_property() class Department(Base): __tablename__ = "department" id = Column(Integer, primary_key=True) name = Column(String(50)) class Employee(Base): __tablename__ = "employee" id = Column(Integer, primary_key=True) name = Column(String(50)) hired_on = Column(DateTime, default=func.now()) department_id = Column(Integer, ForeignKey("department.id")) department = relationship( Department, backref=backref( "employee", uselist=True, cascade="delete,all" ) )
利用SQLAlchemy定义了两个表,其中Department经过relationship能够关联多个Employee,而后经过python console建立表和数据:node
>>> from models import * >>> >>> >>> Base.metadata.create_all(bind=engine) >>> >>> >>> engineering = Department(name="Engineering") >>> session.add(engineering) >>> hr = Department(name="Human") >>> session.add(hr) >>> >>> >>> peter = Employee(name="Peter", department=engine) engine engine_from_config( engineering >>> peter = Employee(name="Peter", department=engineering) >>> >>> session.add(peter) >>> >>> >>> >>> roy = Employee(name="Roy", department=engineering) >>> >>> session.add(roy) >>> >>> >>> tracy = Employee(name="Tracy", department=hr) >>> >>> session.add(tracy)
# -*- coding: utf-8 -*- from graphene import relay, ObjectType, Schema from graphene_sqlalchemy import ( SQLAlchemyConnectionField, SQLAlchemyObjectType ) from models import ( Department as DepartmentModel, Employee as EmployeeModel ) class Department(SQLAlchemyObjectType): class Meta: model = DepartmentModel interfaces = (relay.Node, ) class DepartmentConnections(relay.Connection): class Meta: node = Department class Employee(SQLAlchemyObjectType): class Meta: model = EmployeeModel interfaces = (relay.Node, ) class EmployeeConnections(relay.Connection): class Meta: node = Employee class Query(ObjectType): node = relay.Node.Field() all_employees = SQLAlchemyConnectionField(EmployeeConnections) all_departments = SQLAlchemyConnectionField(DepartmentConnections, sort=None) schema = Schema(query=Query)
首先经过继承SQLAlchemyObjectType类来定义新的查询的类,而后经过relay.Connection来链接所定义的查询类,而且在Query中进行申明,其中我在Connection后面加了一个s是由于在github上看issue的时候发如今构造类的过程当中会出现重名的状况致使申明Query的时候会报错,因此加一个s用来避免这个错误。
其中有关graphene的部分我本身也还不是特别熟悉,因此只能是大概说一下本身的思路,若是有错误的地方会在后续中及时的进行修改,避免误人子弟。
最终达到的效果是指定来一个schema,其中包含了我所定义的查询。python
# -*- coding: utf-8 -*- from flask import Flask from flask_graphql import GraphQLView from models import session from schema import schema app = Flask(__name__) app.debug = True app.add_url_rule( "/graphql", view_func=GraphQLView.as_view( "graphql", schema=schema, graphiql=True ) ) @app.teardown_appcontext def shutdown_session(exception=None): session.remove() if __name__ == "__main__": app.run()
经过Flask的add_url_rule将graph的视图定义成经过路由可访问,而后启动就能够进行访问了,点击http://127.0.0.1:5000/graphql就能够本地访问了。mysql
# run.docker FROM python:3.6 COPY . /app WORKDIR /app RUN pip install -r requirements.txt CMD ["python", "app.py"]
这个是个人Dockerfile,经过Dockerfile,我指定了这个镜像是来自于python:3.6
这个镜像,而后把我当前目录下的全部内容经过COPY . /app
复制到了docker镜像中的/app
目录下,接着我指定了WORKDIR
为/app
,这样我就能够在/app
目录下进行操做了,首先是安装全部须要的依赖包,由于我是从python3.6拉的镜像,因此能够不用再去安装pip,直接就能够安装了,若是是其余镜像可能还要同构apt去安装pip再进行依赖包的安装,最后就是用CMD
来运行文件了。git
docker build -t flask_sqlalchemy:core -f run.docker . # 其中的.是为了指明上下文路径,其实Dockerfile中的命令并非对本地文件进行操做,而是经过指定上下文路径将这些文件传到docker搭建镜像的环境中再进行操做。
镜像创建以后就能够run了github
docker run -d -p 5000:5000 --name flask-core flask_sqlalchemy:lastest
而后就启动了。
sql