Given a set of intervals, for each of the interval i, check if there exists an interval j whose start point is bigger than or equal to the end point of the interval i, which can be called that j is on the "right" of i. For any interval i, you need to store the minimum interval j's index, which means that the interval j has the minimum start point to build the "right" relationship for interval i. If the interval j doesn't exist, store -1 for the interval i. Finally, you need output the stored value of each interval as an array. Note: You may assume the interval's end point is always bigger than its start point. You may assume none of these intervals have the same start point. Example 1: Input: [ [1,2] ] Output: [-1] Explanation: There is only one interval in the collection, so it outputs -1. Example 2: Input: [ [3,4], [2,3], [1,2] ] Output: [-1, 0, 1] Explanation: There is no satisfied "right" interval for [3,4]. For [2,3], the interval [3,4] has minimum-"right" start point; For [1,2], the interval [2,3] has minimum-"right" start point. Example 3: Input: [ [1,4], [2,3], [3,4] ] Output: [-1, 2, -1] Explanation: There is no satisfied "right" interval for [1,4] and [3,4]. For [2,3], the interval [3,4] has minimum-"right" start point. NOTE: input types have been changed on April 15, 2019. Please reset to default code definition to get new method signature.
假设一个二维的整数数组中每一行表示一个区间,每一行的第一个值表示区间的左边界,第二个值表示区间的右边界。如今要求返回一个整数数组,用来记录每个边界右侧最邻近的区间。java
如[ [1,4], [2,3], [3,4] ]
表示三个区间,[1,4]不存在最邻近右区间,所以[1,4]的最邻近右区间的位置为-1。[2,3]最邻近右区间为[3,4],所以返回2,[3,4]也不存在最临近右区间,所以也返回-1。最终函数返回数组[-1,2,-1]。数组
若是咱们将区间按照左边界进行排序,则针对每个区间的右边界,只要找到左边界比这个值大的最小左边界所在的区间便可。这里不可以直接对原来的二维数组进行排序,由于会丢失每个区间的原始下标位置。代码中采用了内部类Node来记录每个区间的左边界以及每个区间的原始下标,并对Node进行排序和二分法查找。代码以下:ide
public int[] findRightInterval(int[][] intervals) { int[] result = new int[intervals.length]; Arrays.fill(result, -1); Node[] leftIndex = new Node[intervals.length]; for(int i = 0 ; i<intervals.length ; i++) { Node n = new Node(); n.index = i; n.value = intervals[i][0]; leftIndex[i] = n; } Arrays.sort(leftIndex); for(int i = 0 ; i<intervals.length ; i++) { int rightIndex = intervals[i][1]; int left = 0, right = intervals.length-1; while(left <=right) { int mid = (left + right) / 2; Node tmp = leftIndex[mid]; if(tmp.value > rightIndex) { right = mid - 1; }else { left = mid + 1; } } if(leftIndex[right].value == rightIndex) { result[i] = leftIndex[right].index; }else if(right<intervals.length-1) { result[i] = leftIndex[right+1].index; } } return result; } public static class Node implements Comparable<Node>{ int value; int index; @Override public int compareTo(Node o) { // TODO Auto-generated method stub return this.value - o.value; } }
换一种思路,有没有办法将全部的区间用一维数组的方式展开,一维数组的每个下标上的值,都记录了该位置所在的右侧第一个区间。具体流程以下:函数
[3,4], [2,3], [1,2]
的三个区间,展开来后咱们知道这里的三个区间横跨了[1,4]这么一个区间代码以下:ui
public int[] findRightInterval(int[][] intervals) { int[] result = new int[intervals.length]; int min = intervals[0][0], max = intervals[0][1]; for(int i = 1 ; i<intervals.length ; i++) { min = Math.min(min, intervals[i][0]); max = Math.max(max, intervals[i][1]); } int[] buckets = new int[max - min + 1]; Arrays.fill(buckets, -1); for(int i = 0 ; i<intervals.length ; i++) { buckets[intervals[i][0] - min] = i; } for(int i = buckets.length-2 ; i>=0 ; i--) { if(buckets[i] == -1) buckets[i] = buckets[i+1]; } for(int i = 0 ; i<intervals.length ; i++) { result[i] = buckets[intervals[i][1] - min]; } return result; }
这里的核心思路在于,如何理解bucket数组,这个bucket数组本质上是将全部的区间以最左边界和最右边界展开,数组的每个下标对应着区间中的相对位置,并记录了这个下标右侧的第一个区间的位置。this