本教程展现了如何从了解张量开始到使用PyTorch训练简单的神经网络,是很是基础的PyTorch入门资源.PyTorch创建在Python和火炬库之上,并提供了一种相似Numpy的抽象方法来表征量(或多维数组),它还能利用GPU来提高性能。本教程的代码并不完整,详情请查看原Jupyter Notebook文档。
#生成2-d pytorch张量(即,基质)
pytorch_tensor = torch.Tensor(10,20)
的打印(“类型:” ,类型(pytorch_tensor), “ 和尺寸:”,pytorch_tensor.shape)
复制代码
#将pytorch张量转换为numpy数组:
numpy_tensor = pytorch_tensor.numpy()
print(“type:”,type(numpy_tensor),“and size:”,numpy_tensor.shape)
#将numpy数组转换为Pytorch Tensor:
print(“type:”,type(torch.Tensor(numpy_tensor)),“and size:”,torch.Tensor(numpy_tensor).shape)
复制代码
T = torch.rand(2,4,3,5)
一个= np.random.rand(2,4,3,5)
复制代码
T = torch.rand(2,4,3,5)
一个= t.numpy()
pytorch_slice = T [ 0,1:3,:,4 ]
numpy_slice = A [ 0,1:3,:,4 ]
打印('张量[0,1:3,:1,4]:\ N',pytorch_slice)
打印('NdArray [0,1:3,:1,4]:\ N',numpy_slice)
------- -------------------------------------------------- ----------------
张量[ 0,1:3,:,4 ]:
0.2032 0.1594 0.3114
0.9073 0.6497 0.2826
[torch.FloatTensor大小的2 ×3]
NdArray [ 0,1:3,:,4 ]:
[[ 0.20322084 0.15935552 0.31143939 ]
[ 0.90726137 0.64966112 0.28259504 ]]
复制代码
t = t - 0.5
a = t.numpy()
pytorch_masked = t [t> 0 ]
numpy_masked = a [a> 0 ]
复制代码
pytorch_reshape = t.view([ 6,5,4 ])
numpy_reshape = a.reshape([ 6,5,4 ])
复制代码
从 torch.autograd 进口可变
进口 torch.nn.functional 做为 ˚F
X =变数(torch.randn(4,1),requires_grad = 假)
Y =变量(torch.randn(3,1),requires_grad = 假)
复制代码
W1 =变数(torch.randn(5,4),requires_grad = 真)
W2 =变量(torch.randn(3,5),requires_grad = 真)
复制代码
def model_forward (x):
return F.sigmoid(w2 @ F.sigmoid(w1 @ x))
print(w1)
print(w1.data.shape)
print(w1.grad)#最初,不存在
---- -------------------------------------------------- -------------------
可变含:
1.6068 -1.3304 -0.6717 -0.6097
-0.3414 -0.5062 -0.2533 1.0260
-0.0341 -1.2144 -1.5983 -0.1392
-0.5473 0.0084 0.4054 0.0970
0.3596 0.5987 -0.0324 0.6116
[torch.Float传感器的大小5 X4的]
torch.Size([ 5,4 ])
无
复制代码
导入 torch.nn 为 nn
条件= nn.MSELoss()
复制代码
导入 torch.optim 做为 optim
optimizer = optim.SGD([w1,w2],lr = 0.001)
复制代码
对于历元在范围(10):
损耗=标准(model_forward(x)中,y)的
optimizer.zero_grad() #零出之前梯度
loss.backward()#计算新梯度
optimizer.step() #应用这些梯度
打印( w1)
------------------------------------------------ -------------------------
变量包含:
1.6067 -1.3303 -0.6717 -0.6095
-0.3414 -0.5062 -0.2533 1.0259
-0.0340 -1.2145 -1.5983 -0.1396
-0.5476 0.0085 0.4055 0.0976
0.3597 0.5986 -0.0324 0.6113
[火炬。尺寸为5 x4的飞溅传感器 ]
复制代码
cuda_gpu = torch.cuda.is_available()
if(cuda_gpu):
print(“Great,you have a GPU!”)
else:
print(“Life is short - consider a GPU!”)
复制代码
若是 cuda_gpu:
x = x.cuda()
print(type(x.data))
x = x.cpu()
print(type(x.data))
--------------- -------------------------------------------------- --------
< class ' 火炬。cuda。FloatTensor '>
< class ' 火炬。FloatTensor '>
复制代码
def train (model,epoch,criterion,optimizer,data_loader):
model.train()
for batch_idx,(data,target) in enumerate(data_loader):
if cuda_gpu:
data,target = data.cuda(),target.cuda( )
model.cuda()
数据,目标=变量(数据),变量(目标)
输出=模型(数据)
optimizer.zero_grad()
损失=标准(输出,目标)
loss.backward()
optimizer.step()
if( batch_idx + 1)% 400 == 0:
print('Train Epoch:{} [{} / {}({:.0f}%)] \ tLoss:{:.6f}'. format(
epoch,(batch_idx + 1)* len(data),len(data_loader.dataset ),
100 *(batch_idx + 1)/ LEN(data_loader),loss.data [ 0 ]))
DEF 试验(模型,历元,标准,data_loader) :
model.eval()
test_loss = 0
正确= 0
为数据,目标在 data_loader中:
if cuda_gpu:
data,target = data.cuda(),target.cuda()
model.cuda()
数据,target =变量(数据),变量(目标)
output = model(data)
test_loss + = criterion(output,target).data [ 0 ]
pred = output.data.max(1)[ 1 ] #获取最大对数几率索引
+ = pred.eq(目标数据).cpu()。sum()
test_loss / = len(data_loader)#失败函数已经在批量大小上取平均值
acc = correct / len(data_loader.dataset)
print('\ nTest set:Average loss:{:。 4f},准确度:{} / {}({:.0f }%)\ n'.format(
test_loss,correct,len(data_loader.dataset),100. * acc))
return(acc,test_loss)
复制代码
从 sklearn.datasets 导入 make_regression
进口 seaborn 做为 SNS
进口熊猫做为 PD
进口 matplotlib.pyplot 做为 PLT
sns.set()
x_train,y_train,W_target = make_regression(N_SAMPLES次= 100,n_features = 1,噪声= 10,COEF = 真)
DF = pd.DataFrame(data = { 'X':x_train.ravel(),'Y':y_train.ravel()})
sns.lmplot(x = 'X',y = 'Y',data = df,fit_reg = True)
plt.show()
1)x_torch = torch.FloatTensor(x_train)
y_torch = torch.FloatTensor(y_train)
y_torch = y_torch.view(y_torch.size()[ 0 ],1)
复制代码
class LinearRegression (torch.nn.Module):
def __init__ (self,input_size,output_size):
super(LinearRegression,self).__ init __()
self.linear = torch.nn.Linear(input_size,output_size)
def forward (self,x ):
返回 self.linear(x)的
模型=线性回归( 1, 1)
复制代码
咱们还须要使用优化函数(SGD),并运行与以前示例相似的反向传播。本质上,咱们重复上文定义的train()函数中的步骤。不能直接使用该函数的缘由是咱们实现它的目的是分类而不是回归,以及咱们使用交叉熵损失和最大元素的索引做为模型预测。而对于线性回归,咱们使用线性层的输出做为预测。git
准则= torch.nn.MSELoss()
优化= torch.optim.SGD(model.parameters(),LR = 0.1)
对于历元在范围(50):
数据,目标=变量(x_torch),变量(y_torch)
输出= model(data)
optimizer.zero_grad()
loss = criterion(output,target)
loss.backward()
optimizer.step()
predict = model(Variable(x_torch))。data.numpy()
复制代码
plt.plot(x_train,y_train,'o',label = '原始数据')
plt.plot(x_train,predicted,label = 'Fitted line')
plt.legend()
plt.show()
复制代码
从 torchvision 导入数据集,变换
batch_num_size = 64
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data',train = True,download = True,transform = transforms.Compose([
transforms.ToTensor()),
转换。 Normalize((0.1307,),(0.3081,))
])),
batch_size = batch_num_size,shuffle = True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data',train = False,transform = transforms。撰写([
transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))
])),
batch_size = batch_num_size,shuffle = True)
复制代码
类 LeNet (nn.Module) :
DEF __init__ (个体):
超级(LeNet,自我).__ INIT __()
self.conv1 = nn.Conv2d( 1, 10,kernel_size = 5)
self.conv2 = nn.Conv2d( 10, 20,kernel_size = 5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear( 320, 50)
self.fc2 = nn.Linear( 50, 10)
DEF 向前(个体,X) :
X = F .relu(F.max_pool2d(self.conv1(x)的2))
X = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(X)),2))
X = x.view(-1,320)
X = F.relu(self.fc1(X ))
x = F.dropout(x,training = self.training)
x = self.fc2(x)
return F.log_softmax(x,dim = 1)
复制代码
model = LeNet()
if cuda_gpu:
model.cuda()
print('MNIST_net model:\ n')
print(model)
----------------------- --------------------------------------------------
MNIST_net模型:
LeNet(
(CONV1):Conv2d(1,10,kernel_size =(5,5),跨度=(1,1))
(CONV2):Conv2d(10,20,kernel_size =(5,5),步幅=(1,1))
(conv2_drop):Dropout2d(p值=0.5)
(fc1):线性(in_features = 320,out_features = 50,bias = 真)
(fc2):线性(in_features = 50,out_features = 10,bias = 真)
)
复制代码
criteria = nn.CrossEntropyLoss()
优化器= optim.SGD(model.parameters(),lr = 0.005,动量= 0.9)
复制代码
import os epochs
= 5
if(os.path.isfile('pretrained / MNIST_net.t7')):
print('Loading model')
model.load_state_dict(torch.load('pretrained / MNIST_net.t7',map_location = lambda storage ,LOC:存储))
ACC,损耗=试验(模型,1,标准,test_loader)
不然:
打印('训练模式')
用于历元在范围(1,历元+ 1:)
系(模型,历元,标准,优化,train_loader)
acc,loss = test(model,1,criterion,test_loader)
torch.save(model.state_dict(),'pretrained / MNIST_net.t7')
------------------ -------------------------------------------------- -----
加载模型
试验组:平均损耗:0.0471,准确度:9859号文件 / 10000(99%)
复制代码
print('Internal models:')
for idx,m in enumerate(model.named_modules()):
print(idx,' - >',m)
print('-------------- -------------------------------------------------- ---------”) #输出: 内部模型: 0 - >('',LeNet( (CONV1):Conv2d(1,10,kernel_size =(5,5),跨度=(1,1)) (CONV2):Conv2d(10,20,kernel_size =(5,5),跨度=(1,1)) (conv2_drop):Dropout2d(p值= 0.5) (FC1):线性(in_features = 320,out_features = 50,偏压= 真) (FC2):线性(in_features = 50,out_features = 10,bias = True) )) ----------------------------------------- -------------------------------- 1 - >('CONV1',Conv2d(1,10,kernel_size =(5,5),跨度=(1,1))) -------------------------------------------------- ----------------------- 2 - >('CONV2',Conv2d(10,20,kernel_size =(5,5),跨度=(1,1))) ---------------------------------------------- --------------------------- 3 - >('conv2_drop',Dropout2d(p = 0.5)) -------- -------------------------------------------------- --------------- 4 - >('fc1',Linear(in_features = 320,out_features = 50,bias = True)) -------------------------------------------------- ----------------------- 5 - >('fc2',Linear(in_features = 50,out_features = 10,bias = True)) ---- -------------------------------------------------- ------------------- 复制代码
print(type(t.cpu()。data))
if torch.cuda.is_available():
print(“Cuda is available”)
print(type(t.cuda()。data))
else:
print(“Cuda is不可用“)
---------------------------------------------- ---------------------------
< 类 ' 炬。FloatTensor '>
Cuda的 是 可用的
< 类 ' 炬。cuda。FloatTensor '>
复制代码
若是 torch.cuda.is_available():
尝试:
打印(t.data.numpy()),
除了 RuntimeError 为 e:
“你不能将GPU张量转换为numpy nd数组,你必须将你的weight tendor复制到cpu而后获取numpy数组“
print(type(t.cpu()。data.numpy()))
print(t.cpu()。data.numpy()。shape)
print(t.cpu()。data)。 numpy的())
复制代码
data = model.conv1.weight.cpu()。data.numpy()
print(data.shape)
print(data [:, 0 ] .shape)
kernel_num = data.shape [ 0 ]
fig,axes = plt.subplots( NCOLS = kernel_num,figsize =(2 * kernel_num,2))
为山口在范围(kernel_num):
轴[COL] .imshow(数据[COL,0,:,:],CMAP = plt.cm.gray)
PLT。显示()
复制代码