OpenCV 3.2 Tracking 物体跟踪

跟踪就是在连续视频帧中定位物体,一般的跟踪算法包括如下几类:html

1. Dense Optical Flow 稠密光流算法

2. Sparse Optical Flow 稀疏光流 最典型的如KLT算法(Kanade-Lucas-Tomshi)ide

3. Kalman Filterspa

4. Meanshift and Camshiftcode

5. Multiple object tracking视频

须要注意跟踪和识别的区别,一般来讲跟踪能够比识别快不少,且跟踪失败了能够找回来。htm

OpenCV 3之后实现了不少追踪算法,都实如今contrib模块中,安装参考blog

下面code实现了跟踪笔记本摄像头画面中的固定区域物体,能够选用OpenCV实现的算法ip

#include <opencv2/opencv.hpp>
#include <opencv2/tracking.hpp>

using namespace std;
using namespace cv;

int main(int argc, char** argv){
  // can change to BOOSTING, MIL, KCF (OpenCV 3.1), TLD, MEDIANFLOW, or GOTURN (OpenCV 3.2)
  Ptr<Tracker> tracker = Tracker::create("MEDIANFLOW"); 
  VideoCapture video(0);
  if(!video.isOpened()){
    cerr << "cannot read video!" << endl;
    return -1;
  }
  Mat frame;
  video.read(frame);
  Rect2d box(270, 120, 180, 260);
  tracker->init(frame, box);
  while(video.read(frame)){
    tracker->update(frame, box);
    rectangle(frame, box, Scalar(255, 0, 0), 2, 1);
    imshow("Tracking", frame);
    int k=waitKey(1);
    if(k==27) break;
  }
}

 着重了解效果较好的KCF(Kernelized Correlation Filters)和经典的KLT算法get

相关文章
相关标签/搜索