pom文件:java
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.example</groupId> <artifactId>demo-lucene</artifactId> <version>0.0.1-SNAPSHOT</version> <packaging>war</packaging> <name>demo-lucene</name> <description>Demo project for Spring Boot</description> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>2.1.0.RELEASE</version> <relativePath/> <!-- lookup parent from repository --> </parent> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding> <java.version>1.8</java.version> </properties> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> <!-- Lucene核心库 --> <dependency> <groupId>org.apache.lucene</groupId> <artifactId>lucene-core</artifactId> <version>7.2.1</version> </dependency> <!-- Lucene解析库 --> <dependency> <groupId>org.apache.lucene</groupId> <artifactId>lucene-queryparser</artifactId> <version>7.2.1</version> </dependency> <!-- Lucene附加的分析库 --> <dependency> <groupId>org.apache.lucene</groupId> <artifactId>lucene-analyzers-common</artifactId> <version>7.2.1</version> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> </plugin> </plugins> </build> </project>
package com.example.demo; import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.document.Document; import org.apache.lucene.document.Field; import org.apache.lucene.document.StringField; import org.apache.lucene.document.TextField; import org.apache.lucene.index.DirectoryReader; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.index.Term; import org.apache.lucene.search.*; import org.apache.lucene.store.Directory; import org.apache.lucene.store.FSDirectory; import java.io.IOException; import java.nio.file.Paths; /** * Created by 1 on 2018/11/20. */ public class DemoLucene { public static void main(String[] args) throws IOException { String path = "D:\\lucene\\index"; Directory directory = FSDirectory.open(Paths.get(path)); Analyzer analyzer = new StandardAnalyzer(); IndexWriterConfig config = new IndexWriterConfig(analyzer); config.setOpenMode(IndexWriterConfig.OpenMode.CREATE); IndexWriter indexWriter = new IndexWriter(directory, config); Document document1 = new Document(); document1.add(new StringField("name", "张三", Field.Store.YES)); document1.add(new StringField("no", "1001", Field.Store.YES)); document1.add(new TextField("content", "中心小学的张三是个喜欢学习的学生", Field.Store.YES)); indexWriter.addDocument(document1); Document document2 = new Document(); document2.add(new StringField("name", "李四", Field.Store.YES)); document2.add(new StringField("no", "1002", Field.Store.YES)); document2.add(new TextField("content", "中心小学的李四是个期末考试成绩很好的学生", Field.Store.YES)); indexWriter.addDocument(document2); Document document3 = new Document(); document3.add(new StringField("name", "王五", Field.Store.YES)); document3.add(new StringField("no", "1003", Field.Store.YES)); document3.add(new TextField("content", "南宁市中心小学的王五在班级里是个班长", Field.Store.YES)); indexWriter.addDocument(document3); indexWriter.close(); DirectoryReader directoryReader = DirectoryReader.open(directory); IndexSearcher indexSearcher = new IndexSearcher(directoryReader); Query query = new TermQuery(new Term("content", "班长")); System.out.println("查询语句 = " + query); TopDocs topDocs = indexSearcher.search(query, 100); ScoreDoc[] scoreDocs = topDocs.scoreDocs; if(scoreDocs.length == 0){ System.out.println("未找到数据"); }else{ for (int i = 0; i < scoreDocs.length; i++) { Document docResult = indexSearcher.doc(scoreDocs[i].doc); System.out.println(String.format("====================== 第%d条 ======================", i + 1)); System.out.println("name:" + docResult.get("name")); System.out.println("no:" + docResult.get("no")); System.out.println("content:" + docResult.get("content")); } } } }
一、Directory是个抽象类,其子类的BaseDirectory也是抽象类。git
BaseDirectory的子类:github
RAMDirectory(普通类):把索引建立到内存web
FSDirectory(抽象类):把索引建立到磁盘spring
本文使用FSDirectory。经过FSDirectory的静态方法open能够建立一个目录。看看open方法:apache
FSDirectory.open方法返回FSDirectory抽象类的其中一个子类,这里根据状况会返回一个MMapDirectory。maven
一、抽象类Query有不少子类如上图,这里只列举经常使用的类。函数
PhraseQuery.Builder builder = new PhraseQuery.Builder(); builder.add(new Term("content", "tom")); builder.add(new Term("content", "is")); builder.add(new Term("content", "student")); System.out.println("查询语句 = " + builder.build()); TopDocs topDocs = indexSearcher.search(builder.build(), 100);
WildcardQuery wildcardQuery = new WildcardQuery(new Term("content", "中心小学*")); System.out.println("查询语句 = " + wildcardQuery); TopDocs topDocs = indexSearcher.search(wildcardQuery, 100);
FuzzyQuery fuzzyQuery = new FuzzyQuery(new Term("name", "王健林"), 2, 3); System.out.println("查询语句 = " + fuzzyQuery); TopDocs topDocs = indexSearcher.search(fuzzyQuery, 100);
这里的FuzzyQuery使用了3个参数的构造函数:spring-boot
public FuzzyQuery(Term term, int maxEdits, int prefixLength) { this(term, maxEdits, prefixLength, defaultMaxExpansions, defaultTranspositions); }
maxEdits:最大编辑距离(该参数范围是0-2,默认值是2,编辑指:新增一个字符、修改一个字符、删除一个字符)学习
举个例子,上面的模糊查询参数是“王健林”,maxEdits=2,那么将匹配下列内容:
一、王健林首富(最大编辑距离maxEdits=2,在“王健林”后面作2次新增字符分别是“首”、“富”)
二、王力宏(最大编辑距离maxEdits=2,把“健”、“林”分别修改成“力”、“宏”)
三、王(最大编辑距离maxEdits=2,把“健”、“林”分别删除)
四、王五(最大编辑距离maxEdits=2,把“健”修改成“五”,把“林”删除)
等等,能够看出最大编辑距离maxEdits=2,那么将随机组合“增、删、改”字符2次后是否匹配。
prefixLength:前缀长度(默认值是0,当prefixLength不为0则表示前面多少个字符必需要匹配)
举个例子:
FuzzyQuery fuzzyQuery = new FuzzyQuery(new Term("name", "王健林"), 2, 2):那么必须匹配“王健”开头的内容,
FuzzyQuery fuzzyQuery = new FuzzyQuery(new Term("name", "王健林"), 2, 3):那么必须匹配“王健林”开头的内容,可是没法匹配“王健林”这条记录,若是知道的话也告诉我为何。
BooleanQuery.Builder builder = new BooleanQuery.Builder(); builder.add(new TermQuery(new Term("content", "首富")), BooleanClause.Occur.MUST); builder.add(new TermQuery(new Term("content", "影院")), BooleanClause.Occur.MUST); System.out.println("查询语句 = " + builder.build()); TopDocs topDocs = indexSearcher.search(builder.build(), 100);
Occur是个枚举有如下值:
MUST、MUST_NOT、FILTER、SHOULD
newRangeQuery:整型范围查询
newExactQuery:整型精确查询
Query query = null; query = IntPoint.newRangeQuery("number", 1, 10);//范围查询 query = IntPoint.newExactQuery("number", 5);//精确查询 System.out.println("查询语句 = " + query); TopDocs topDocs = indexSearcher.search(query, 20);
Query query = null; query = new TermQuery(new Term("name", "张三")); System.out.println("查询语句 = " + query); TopDocs topDocs = indexSearcher.search(query, 20);
TextField:Reader或String索引全文搜索
StringField:将String逐字索引做为单个标记
IntPoint:int为精确/范围查询创建索引。
LongPoint:long为精确/范围查询创建索引。
FloatPoint:float为精确/范围查询创建索引。
DoublePoint:double为精确/范围查询创建索引。
SortedDocValuesField:byte[]逐列索引,用于排序/分面
SortedSetDocValuesField:SortedSet<byte[]>逐列索引,用于排序/分面
NumericDocValuesField:long逐列索引,用于排序/分面
SortedNumericDocValuesField:SortedSet<long>逐列索引,用于排序/分面
StoredField:仅用于在摘要结果中检索的存储值
经常使用的Field以下:
TextField:索引、分词
StringField:索引
StoredField:存储值
Document document = new Document(); //建立StringField,使用Field.Store.YES枚举代表要存储该值 document.add(new StringField("name", "王健林", Field.Store.YES)); //建立StringField,使用Field.Store.YES枚举代表要存储该值 document.add(new StringField("no", "1006", Field.Store.YES)); //建立IntPoint document.add(new IntPoint("number", 6)); //若要存储该IntPoint的值,则添加同名的StoredField document.add(new StoredField("number", 6)); //若要排序该IntPoint的值,则添加同名的SortedNumericDocValuesField document.add(new SortedNumericDocValuesField("number", 6L)); //建立TextField,使用Field.Store.YES枚举代表要存储该值 document.add(new TextField("content", "王健林是万达集团的董事长,下有万达影院、万达酒店、万达广场等产业", Field.Store.YES));
当你运行文章开头的demo,查询字段为"content",查询的值为"班长",实际上应该查到document3这个对象的数据,由于已经添加了类型为TextField的字段。而且根据上面说的TextField是建立分词,建立索引。建立分词后,"班长"这个词应该能够查询的到。为何查询不到数据?这里和分词器有关。
Document document3 = new Document();
document3.add(new StringField("name", "王五", Field.Store.YES));
document3.add(new StringField("no", "1003", Field.Store.YES));
document3.add(new TextField("content", "南宁市中心小学的王五在班级里是个班长", Field.Store.YES));
indexWriter.addDocument(document3);
文章开头的demo用的分词器是StandardAnalyzer分词器,看名字就知道是标准分词器。
Analyzer analyzer = new StandardAnalyzer();
如今把这个分词器进行上述的"南宁市中心小学的王五在班级里是个班长"这段文本进行分词,看看结果。
public static void main(String[] args) throws IOException { StandardAnalyzer(); } public static void StandardAnalyzer() throws IOException { String text = "南宁市中心小学的王五在班级里是个班长"; Analyzer analyzer = new StandardAnalyzer(); TokenStream tokenStream= analyzer.tokenStream("word",text); tokenStream.reset(); CharTermAttribute charTermAttribute=tokenStream.addAttribute(CharTermAttribute.class); System.out.println("==========StandardAnalyzer分词开始=========="); while(tokenStream.incrementToken()){ System.out.print(String.format("[%s] ", charTermAttribute.toString())); } System.out.println(""); System.out.println("==========StandardAnalyzer分词结束=========="); }
结果以下:
==========StandardAnalyzer分词开始==========
[南] [宁] [市] [中] [心] [小] [学] [的] [王] [五] [在] [班] [级] [里] [是] [个] [班] [长]
==========StandardAnalyzer分词结束==========
能够看到,StandardAnalyzer这个标准分词器是一个字符一个字符来分词,因此当查询"班长"这个词的时候查不到。
这是个开源的分词器(github地址:https://github.com/wks/ik-analyzer),如今来看看这个分词器的结果。
public static void IKAnalyzer() throws IOException { String text = "南宁市中心小学的王五在班级里是个班长"; Analyzer analyzer = new IKAnalyzer(); TokenStream tokenStream= analyzer.tokenStream("word",text); tokenStream.reset(); CharTermAttribute charTermAttribute=tokenStream.addAttribute(CharTermAttribute.class); System.out.println("==========IKAnalyzer分词开始=========="); while(tokenStream.incrementToken()){ System.out.print(String.format("[%s] ", charTermAttribute.toString())); } System.out.println(""); System.out.println("==========IKAnalyzer分词结束=========="); }
结果以下:
==========IKAnalyzer分词开始==========
[南宁市] [南宁] [市中心] [中心小学] [中心] [小学] [的] [王] [五] [在] [班级] [里] [是] [个] [班长]
==========IKAnalyzer分词结束==========
能够看到这个IKAnalyzer分词器能识别词语来分词。因此只须要对文章开头的demo代码把StandardAnalyzer换成IKAnalyzer。
Directory directory = FSDirectory.open(Paths.get(path)); //这里原来是StandardAnalyzer分词器,换为IKAnalyzer分词器 Analyzer analyzer = new IKAnalyzer(); IndexWriterConfig config = new IndexWriterConfig(analyzer); config.setOpenMode(IndexWriterConfig.OpenMode.CREATE); IndexWriter indexWriter = new IndexWriter(directory, config);
这样就能查询到文章开头的demo的数据。