因为标题长度限制,原题是这样:某系统QPS100万,每十分钟统计一下请求次数最多的100个IP。ip请求写到日志的话,其实就是超大文件中统计top k问题。10分钟6亿条记录,大约是10G级别,因此对于通常单机处理来说不能一次性加载到内存计算。因此分治算法是处理这类问题的基本思想。java
前面说了分治思想。那么具体如何分解问题呢。算法
思路就是把大文件分割成多个能够内存处理的小文件,对每一个小文件统计top k问题,最后再对全部统计结果合并获得最终的top k。apache
注意,这里的分割并非随意分割的,那样最终结果显然是不对的,必须保证相同的ip记录都分割到同一个文件。那么hash算法最合适不过了,能够把相同的ip哈希到同一文件。api
关于top k问题,效率高的解法是使用构造最小堆或者借助快速排序的思想,复杂度为O(nlogk)。这里更适合用最小堆,具体来讲,就是先利用前k个数据构建一个固定大小k的最小堆,对以后的数据,小于堆顶不作处理,大于则替换堆顶并调整。这样,对每一个文件顺序处理完以后就获得最终结果,而不须要保留每一个文件的top k再归并。app
博主偷懒,借助TreeSet代替最小堆来维护top k数据,TreeSet的话底层是借助红黑树排序,比最小堆复杂些,实际上对每一个小文件用红黑树全排序再截取前k个。复杂度O(nlogm),这里m是每一个小文件中的数量, m>>k。再有时间的话再用最小堆优化一下,复杂度应为O(nlogk)。dom
ps:已实现最小堆版本,见实现2,并作了对比实验maven
定时任务使用quartz实现。ide
下面是代码。工具
IP类,封装ip计数,使用TreeSet存放须实现comparable接口。注意这里重写compare方法不要return 0,不然会被TreeSet视为相同对象而放不进去。这个能够看一下TreeSet的实现,它实际上内部仍是一个TreeMap,只是把对象做为key,而value没有使用。add添加元素时,会调用TreeMap的put方法,put内部又会调用compare方法,若是compare返回结果为0,只是从新setValue,对TreeSet至关于什么也没作。优化
package com.hellolvs; import org.apache.commons.lang3.builder.ToStringBuilder; /** * IP计数POJO * * @author lvs * @date 2017/12/08. */ public class IP implements Comparable<IP> { private String ip; private int count; public IP() { } public IP(String ip, int count) { this.ip = ip; this.count = count; } public String getIp() { return ip; } public void setIp(String ip) { this.ip = ip; } public int getCount() { return count; } public void setCount(int count) { this.count = count; } @Override public int compareTo(IP o) { return o.count < this.count ? -1 : 1; } @Override public String toString() { return ToStringBuilder.reflectionToString(this); } }
IPCountJob类,定时统计日志文件中top k个ip。
注意其中的分割文件,这里的分割须要对文件边读边写,不能一次性读入内存再分割。guava io的readLines是直接装入内存的,因此不能用。能够使用java原生的io类,或使用commons io的LineIterator更优雅一些。
package com.hellolvs; import com.google.common.base.Charsets; import com.google.common.base.Objects; import com.google.common.base.StandardSystemProperty; import com.google.common.collect.Maps; import com.google.common.collect.Sets; import com.google.common.io.Files; import com.google.common.io.LineProcessor; import org.apache.commons.io.FileUtils; import org.apache.commons.io.LineIterator; import org.quartz.Job; import org.quartz.JobExecutionContext; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.BufferedWriter; import java.io.File; import java.io.FileWriter; import java.io.IOException; import java.nio.charset.Charset; import java.security.SecureRandom; import java.util.HashMap; import java.util.Map; import java.util.TreeSet; import java.util.concurrent.atomic.AtomicInteger; /** * 定时Job,每十分钟统计请求次数前k的ip * * @author lvs * @date 2017/12/08. */ public class IPCountJob implements Job { private static final Logger LOG = LoggerFactory.getLogger(IPCountJob.class); private static final String LINE_SEPARATOR = StandardSystemProperty.LINE_SEPARATOR.value(); private static final Charset UTF_8 = Charsets.UTF_8; private static final String INPUT_PATH = "/home/lvs/logs/ip.log"; private static final String OUTPUT_PATH = "/home/lvs/logs/split/"; private static final int SPLIT_NUM = 1024; private static final int TOP_K = 100; /** * 利用TreeSet存储请求次数前k的IP */ private TreeSet<IP> resultSet = Sets.newTreeSet(); /** * 分割文件用,保存每一个文件的写入流对象 */ private final Map<Integer, BufferedWriter> bufferMap = Maps.newHashMapWithExpectedSize(SPLIT_NUM); /** * 定时任务,每十分钟统计请求次数前k的IP */ @Override public void execute(JobExecutionContext jobExecutionContext) { // 捕获异常,防止定时任务中断 try { execute(); } catch (Exception e) { LOG.error("定时任务出错:{}", e.getMessage(), e); } } /** * 统计大文件中请求次数前k的IP * * @throws IOException I/O error */ public void execute() throws IOException { // 这里应该每10分钟获取当前轮替日志文件路径,此处用常量路径模拟 File ipLogFile = new File(INPUT_PATH); splitLog(ipLogFile, SPLIT_NUM); File logSplits = new File(OUTPUT_PATH); for (File logSplit : logSplits.listFiles()) { countTopK(logSplit, TOP_K); } LOG.info("结果集:{}", resultSet.size()); for (IP ip : resultSet) { LOG.info("{}", ip); } } /** * 生成模拟日志文件 * * @param logNum 生成日志条数 * @throws IOException I/O error */ public static void generateLog(long logNum) throws IOException { /* 建立文件 */ File log = new File(INPUT_PATH); File parentDir = log.getParentFile(); if (!parentDir.exists()) { parentDir.mkdirs(); } log.createNewFile(); /* 生成随机ip写入文件 */ SecureRandom random = new SecureRandom(); try (BufferedWriter bw = new BufferedWriter(new FileWriter(log))) { for (int i = 0; i < logNum; i++) { StringBuilder sb = new StringBuilder(); sb.append("192.").append(random.nextInt(255)).append(".").append(random.nextInt(255)).append(".") .append(random.nextInt(255)).append(LINE_SEPARATOR); bw.write(sb.toString()); } bw.flush(); } } /** * 分割日志文件 * * @param logFile 待分割文件 * @param fileNum 分割文件数量 * @throws IOException I/O error */ private void splitLog(File logFile, int fileNum) throws IOException { /* 为每一个分割文件建立写入流对象 */ for (int i = 0; i < fileNum; i++) { File file = new File(OUTPUT_PATH + i); File parentDir = file.getParentFile(); if (!parentDir.exists()) { parentDir.mkdirs(); } bufferMap.put(i, new BufferedWriter(new FileWriter(file))); } /* 根据ip的hashcode将数据分割到不一样文件中 */ LineIterator it = null; try { it = FileUtils.lineIterator(logFile, "UTF-8"); while (it.hasNext()) { String ip = it.nextLine(); int hashCode = Objects.hashCode(ip); hashCode = hashCode < 0 ? -hashCode : hashCode; BufferedWriter writer = bufferMap.get(hashCode % fileNum); writer.write(ip + LINE_SEPARATOR); } } finally { /* 释放资源 */ LineIterator.closeQuietly(it); for (Map.Entry<Integer, BufferedWriter> buffer : bufferMap.entrySet()) { BufferedWriter writer = buffer.getValue(); writer.flush(); writer.close(); } bufferMap.clear(); } } /** * 统计请求次数前k的IP * * @param logSplit 当前分割文件 * @param k top k * @throws IOException I/O error */ private void countTopK(File logSplit, int k) throws IOException { /* 读取文件对ip计数 */ HashMap<String, AtomicInteger> ipCountMap = Files.readLines(logSplit, UTF_8, new LineProcessor<HashMap<String, AtomicInteger>>() { private HashMap<String, AtomicInteger> ipCountMap = Maps.newHashMap(); @Override public boolean processLine(String line) throws IOException { AtomicInteger ipCount = ipCountMap.get(line.trim()); if (ipCount != null) { ipCount.getAndIncrement(); } else { ipCountMap.put(line.trim(), new AtomicInteger(1)); } return true; } @Override public HashMap<String, AtomicInteger> getResult() { return ipCountMap; } }); /* 统计结果添加到TreeSet */ for (Map.Entry<String, AtomicInteger> entry : ipCountMap.entrySet()) { resultSet.add(new IP(entry.getKey(), entry.getValue().get())); } /* TreeSet只保留前k个ip */ TreeSet<IP> temp = Sets.newTreeSet(); int i = 0; for (IP o : resultSet) { temp.add(o); i++; if (i >= k) { break; } } resultSet = temp; } /** * 返回统计结果 * * @return 结果集合 */ public TreeSet<IP> getResult() { return resultSet; } }
Main,定时任务启动
package com.hellolvs; import org.quartz.JobBuilder; import org.quartz.JobDetail; import org.quartz.Scheduler; import org.quartz.SimpleScheduleBuilder; import org.quartz.Trigger; import org.quartz.TriggerBuilder; import org.quartz.impl.StdSchedulerFactory; /** * 定时任务启动器 * * @author lvs * @date 2017/12/11. */ public class Main { public static void main(String[] args) throws Exception { // 生成模拟日志文件 IPCountJob.generateLog(600000000); JobDetail job = JobBuilder.newJob(IPCountJob.class) .withIdentity("ipCountJob", "group1").build(); Trigger trigger = TriggerBuilder .newTrigger() .withIdentity("ipCountTrigger", "group1") .withSchedule( SimpleScheduleBuilder.simpleSchedule() .withIntervalInMinutes(10).repeatForever()) .build(); Scheduler scheduler = new StdSchedulerFactory().getScheduler(); scheduler.start(); scheduler.scheduleJob(job, trigger); } }
IP类
package com.hellolvs; import org.apache.commons.lang3.builder.ToStringBuilder; /** * IP计数POJO * * @author lvs * @date 2017/12/08. */ public class IP implements Comparable<IP> { private String ip; private int count; public IP() { } public IP(String ip, int count) { this.ip = ip; this.count = count; } public String getIp() { return ip; } public void setIp(String ip) { this.ip = ip; } public int getCount() { return count; } public void setCount(int count) { this.count = count; } @Override public int compareTo(IP o) { return Integer.compare(this.count, o.count); } @Override public String toString() { return ToStringBuilder.reflectionToString(this); } }
IPCountJob类,最小堆版本统计top k
package com.hellolvs; import com.google.common.base.Charsets; import com.google.common.base.Objects; import com.google.common.base.StandardSystemProperty; import com.google.common.collect.Lists; import com.google.common.collect.Maps; import com.google.common.io.Files; import com.google.common.io.LineProcessor; import org.apache.commons.io.FileUtils; import org.apache.commons.io.LineIterator; import org.quartz.Job; import org.quartz.JobExecutionContext; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.BufferedWriter; import java.io.File; import java.io.FileWriter; import java.io.IOException; import java.nio.charset.Charset; import java.security.SecureRandom; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.concurrent.atomic.AtomicInteger; /** * 定时Job,每十分钟统计请求次数前k的ip * * @author lvs * @date 2017/12/08. */ public class IPCountJob implements Job { private static final Logger LOG = LoggerFactory.getLogger(IPCountJob.class); private static final String LINE_SEPARATOR = StandardSystemProperty.LINE_SEPARATOR.value(); private static final Charset UTF_8 = Charsets.UTF_8; private static final String INPUT_PATH = "/home/lvs/logs/ip.log"; private static final String OUTPUT_PATH = "/home/lvs/logs/split/"; private static final int SPLIT_NUM = 1024; private static final int TOP_K = 100; /** * 利用最小堆结构存储请求次数前k的IP */ private List<IP> result = Lists.newArrayListWithExpectedSize(TOP_K); /** * 分割文件用,保存每一个文件的写入流对象 */ private final Map<Integer, BufferedWriter> bufferMap = Maps.newHashMapWithExpectedSize(SPLIT_NUM); /** * 定时任务,每十分钟统计请求次数前k的IP */ @Override public void execute(JobExecutionContext jobExecutionContext) { // 捕获异常,防止定时任务中断 try { execute(); } catch (Exception e) { LOG.error("定时任务出错:{}", e.getMessage(), e); } } /** * 统计大文件中请求次数前k的IP * * @throws IOException I/O error */ public void execute() throws IOException { // 这里应该每10分钟获取当前轮替日志文件路径,此处用常量路径模拟 File ipLogFile = new File(INPUT_PATH); splitLog(ipLogFile, SPLIT_NUM); File logSplits = new File(OUTPUT_PATH); for (File logSplit : logSplits.listFiles()) { countTopK(logSplit, TOP_K); } MinHeap.sort(result); LOG.info("结果集:{}", result.size()); for (int i = result.size() - 1; i >= 0; i--) { LOG.info("{}", result.get(i)); } } /** * 生成模拟日志文件 * * @param logNum 生成日志条数 * @throws IOException I/O error */ public static void generateLog(long logNum) throws IOException { /* 建立文件 */ File log = new File(INPUT_PATH); File parentDir = log.getParentFile(); if (!parentDir.exists()) { parentDir.mkdirs(); } log.createNewFile(); /* 生成随机ip写入文件 */ SecureRandom random = new SecureRandom(); try (BufferedWriter bw = new BufferedWriter(new FileWriter(log))) { for (int i = 0; i < logNum; i++) { StringBuilder sb = new StringBuilder(); sb.append("192.").append(random.nextInt(255)).append(".").append(random.nextInt(255)).append(".") .append(random.nextInt(255)).append(LINE_SEPARATOR); bw.write(sb.toString()); } bw.flush(); } } /** * 分割日志文件 * * @param logFile 待分割文件 * @param fileNum 分割文件数量 * @throws IOException I/O error */ private void splitLog(File logFile, int fileNum) throws IOException { /* 为每一个分割文件建立写入流对象 */ for (int i = 0; i < fileNum; i++) { File file = new File(OUTPUT_PATH + i); File parentDir = file.getParentFile(); if (!parentDir.exists()) { parentDir.mkdirs(); } bufferMap.put(i, new BufferedWriter(new FileWriter(file))); } /* 根据ip的hashcode将数据分割到不一样文件中 */ LineIterator it = null; try { it = FileUtils.lineIterator(logFile, "UTF-8"); while (it.hasNext()) { String ip = it.nextLine(); int hashCode = Objects.hashCode(ip); hashCode = hashCode < 0 ? -hashCode : hashCode; BufferedWriter writer = bufferMap.get(hashCode % fileNum); writer.write(ip + LINE_SEPARATOR); } } finally { /* 释放资源 */ LineIterator.closeQuietly(it); for (Map.Entry<Integer, BufferedWriter> buffer : bufferMap.entrySet()) { BufferedWriter writer = buffer.getValue(); writer.flush(); writer.close(); } bufferMap.clear(); } } /** * 统计请求次数前k的IP * * @param logSplit 当前分割文件 * @param k top k * @throws IOException I/O error */ private void countTopK(File logSplit, int k) throws IOException { /* 读取文件对ip计数 */ HashMap<String, AtomicInteger> ipCountMap = Files.readLines(logSplit, UTF_8, new LineProcessor<HashMap<String, AtomicInteger>>() { private HashMap<String, AtomicInteger> ipCountMap = Maps.newHashMap(); @Override public boolean processLine(String line) throws IOException { AtomicInteger ipCount = ipCountMap.get(line.trim()); if (ipCount != null) { ipCount.getAndIncrement(); } else { ipCountMap.put(line.trim(), new AtomicInteger(1)); } return true; } @Override public HashMap<String, AtomicInteger> getResult() { return ipCountMap; } }); /* 前k条数据用来构建初始最小堆,以后的数据比堆顶大则替换堆顶并调堆 */ for (Map.Entry<String, AtomicInteger> entry : ipCountMap.entrySet()) { IP ip = new IP(entry.getKey(), entry.getValue().get()); if (result.size() != k) { result.add(ip); if (result.size() == k) { MinHeap.initMinHeap(result); } } else { if (ip.compareTo(result.get(0)) > 0) { result.set(0, ip); MinHeap.adjust(result, 0, k); } } } } /** * 返回统计结果 * * @return 结果集合 */ public List<IP> getResult() { return result; } }
MinHeap类,最小堆工具
package com.hellolvs; import java.util.List; /** * 最小堆 * * @author lvs * @date 2017-12-12 */ public class MinHeap { /** * 对最小堆排序 * * @param list 已经为最小堆结构的列表 * @param <T> 元素须实现Comparable接口 */ public static <T extends Comparable<? super T>> void sort(List<T> list) { for (int i = list.size() - 1; i > 0; i--) { swap(list, 0, i); adjust(list, 0, i); } } /** * 初始化最小堆 * * @param list 待初始化为最小堆的列表 * @param <T> 元素须实现Comparable接口 */ public static <T extends Comparable<? super T>> void initMinHeap(List<T> list) { /* 从最后一个非叶节点开始至根节点依次调整 */ for (int i = list.size() / 2 - 1; i >= 0; i--) { adjust(list, i, list.size()); } } /** * 调堆 * * @param list 当前堆 * @param <T> 元素须实现Comparable接口 * @param cur 待调整位置 * @param length 当前堆大小 */ public static <T extends Comparable<? super T>> void adjust(List<T> list, int cur, int length) { T tmp = list.get(cur); for (int i = 2 * cur + 1; i < length; i = 2 * i + 1) { if (i + 1 < length && list.get(i).compareTo(list.get(i + 1)) > 0) { i++; // i指向孩子节点中最小的节点 } if (tmp.compareTo(list.get(i)) > 0) { list.set(cur, list.get(i)); // 最小孩子节点调整到其父节点 cur = i; // 当前节点置为最小孩子节点,继续调整 } else { break; // 没有调整时退出循环 } } list.set(cur, tmp); // 被调整节点最终存放位置 } /** * 交换List中的元素 * * @param list 待交换列表 * @param i 第一个元素位置 * @param j 第二个元素位置 */ private static <T extends Comparable<? super T>> void swap(List<T> list, int i, int j) { T tmp = list.get(i); list.set(i, list.get(j)); list.set(j, tmp); } }
Main类,无改动
package com.hellolvs; import org.quartz.JobBuilder; import org.quartz.JobDetail; import org.quartz.Scheduler; import org.quartz.SimpleScheduleBuilder; import org.quartz.Trigger; import org.quartz.TriggerBuilder; import org.quartz.impl.StdSchedulerFactory; /** * 定时任务启动器 * * @author lvs * @date 2017/12/11. */ public class Main { public static void main(String[] args) throws Exception { // 生成模拟日志文件 IPCountJob.generateLog(600000000); JobDetail job = JobBuilder.newJob(IPCountJob.class) .withIdentity("ipCountJob", "group1").build(); Trigger trigger = TriggerBuilder .newTrigger() .withIdentity("ipCountTrigger", "group1") .withSchedule( SimpleScheduleBuilder.simpleSchedule() .withIntervalInMinutes(10).repeatForever()) .build(); Scheduler scheduler = new StdSchedulerFactory().getScheduler(); scheduler.start(); scheduler.scheduleJob(job, trigger); } }
附一下pom文件:
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.hellolvs</groupId> <artifactId>ipCount</artifactId> <version>1.0.0</version> <packaging>jar</packaging> <properties> <guava.version>20.0</guava.version> <commons-lang3.version>3.1</commons-lang3.version> <commons-io.version>2.4</commons-io.version> <joda-time.version>2.6</joda-time.version> <org.quartz-scheduler.version>2.1.7</org.quartz-scheduler.version> <org.slf4j.version>1.7.5</org.slf4j.version> <logback.version>1.0.13</logback.version> <junit.version>4.10</junit.version> <java.version>1.8</java.version> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> </properties> <dependencyManagement> <dependencies> <!-- guava --> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>${guava.version}</version> </dependency> <!-- commons lang3--> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-lang3</artifactId> <version>${commons-lang3.version}</version> </dependency> <!-- commons io --> <dependency> <groupId>commons-io</groupId> <artifactId>commons-io</artifactId> <version>${commons-io.version}</version> </dependency> <!-- joda-time --> <dependency> <groupId>joda-time</groupId> <artifactId>joda-time</artifactId> <version>${joda-time.version}</version> </dependency> <!-- quartz --> <dependency> <groupId>org.quartz-scheduler</groupId> <artifactId>quartz</artifactId> <version>${org.quartz-scheduler.version}</version> </dependency> <!-- slf4j --> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-api</artifactId> <version>${org.slf4j.version}</version> </dependency> <!-- logback --> <dependency> <groupId>ch.qos.logback</groupId> <artifactId>logback-classic</artifactId> <version>${logback.version}</version> <scope>runtime</scope> </dependency> <dependency> <groupId>ch.qos.logback</groupId> <artifactId>logback-core</artifactId> <version>${logback.version}</version> <scope>runtime</scope> </dependency> <!-- junit --> <dependency> <groupId>junit</groupId> <artifactId>junit-dep</artifactId> <version>${junit.version}</version> <scope>test</scope> </dependency> </dependencies> </dependencyManagement> <dependencies> <!-- guava --> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> </dependency> <!-- commons lang3--> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-lang3</artifactId> </dependency> <!-- commons io --> <dependency> <groupId>commons-io</groupId> <artifactId>commons-io</artifactId> </dependency> <!-- joda-time --> <dependency> <groupId>joda-time</groupId> <artifactId>joda-time</artifactId> </dependency> <!-- quartz --> <dependency> <groupId>org.quartz-scheduler</groupId> <artifactId>quartz</artifactId> </dependency> <!-- slf4j --> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-api</artifactId> </dependency> <!-- logback --> <dependency> <groupId>ch.qos.logback</groupId> <artifactId>logback-classic</artifactId> </dependency> <dependency> <groupId>ch.qos.logback</groupId> <artifactId>logback-core</artifactId> </dependency> <!-- junit --> <dependency> <groupId>junit</groupId> <artifactId>junit-dep</artifactId> </dependency> </dependencies> <build> <finalName>ROOT</finalName> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>${java.version}</source> <target>${java.version}</target> <encoding>${project.build.sourceEncoding}</encoding> </configuration> </plugin> </plugins> </build> </project>
生成了6亿条数据的日志。
生成6亿条日志时间:521582 分割文件时间:173219 分割后统计top k时间:195037 定时任务执行时间:368294
注:定时任务执行时间指的是对大文件的总统计时间,主要是分割文件+分割后统计top k。
cpu和堆使用状况:
能够看到堆变化明显分为三阶段:对应了生成日志、分割日志、分割后统计top k。
生成6亿条日志时间:513840 分割文件时间:148861 分割后统计top k时间:190966 定时任务执行时间:339870
cpu和堆使用状况:
总结:
生成日志和分割文件是没有改动的,运行时间不同,可能有必定偏差。
却是两个版本统计top k时间没有明显的变化,按上面分析O(nlogm)和O(nlogk)应该有比较明显的差距才对,这里n=600000000,m约600000,k=100,各位能够帮忙分析一下效率差距不大的缘由。
不过能够看到堆内存使用明显下降了约100MB,由于TreeSet须要添加m个元素再截取k个,而MinHeap只须要添加k个元素。
我的博客:www.hellolvs.com