主要做用:提升决策树或随机森林等ML方法的分类效果。
VectorIndexer是对数据集特征向量中的类别(离散值)特征(index categorical features categorical features )进行编号。
它可以自动判断那些特征是离散值型的特征,并对他们进行编号,具体作法是经过设置一个maxCategories,特征向量中某一个特征不重复取值个数小于maxCategories,则被从新编号为0~K(K<=maxCategories-1)。某一个特征不重复取值个数大于maxCategories,则该特征视为连续值,不会从新编号(不会发生任何改变)。结合例子看吧,实在太绕了。apache
VectorIndexer helps index categorical features in datasets of Vectors. It can both automatically decide which features are categorical and convert original values to category indices. Specifically, it does the following: Take an input column of type Vector and a parameter maxCategories. Decide which features should be categorical based on the number of distinct values, where features with at most maxCategories are declared categorical. Compute 0-based category indices for each categorical feature. Index categorical features and transform original feature values to indices. Indexing categorical features allows algorithms such as Decision Trees and Tree Ensembles to treat categorical features appropriately, improving performance. This transformed data could then be passed to algorithms such as DecisionTreeRegressor that handle categorical features.
用一个简单的数据集举例以下:app
//定义输入输出列和最大类别数为5,某一个特征 //(即某一列)中多于5个取值视为连续值
VectorIndexerModel featureIndexerModel=new VectorIndexer() .setInputCol("features") .setMaxCategories(5) .setOutputCol("indexedFeatures") .fit(rawData); //加入到Pipeline
Pipeline pipeline=new Pipeline() .setStages(new PipelineStage[] {labelIndexerModel, featureIndexerModel, dtClassifier, converter}); pipeline.fit(rawData).transform(rawData).select("features","indexedFeatures").show(20,false); //显示以下的结果:
+-------------------------+-------------------------+
|features |indexedFeatures |
+-------------------------+-------------------------+
|(3,[0,1,2],[2.0,5.0,7.0])|(3,[0,1,2],[2.0,1.0,1.0])|
|(3,[0,1,2],[3.0,5.0,9.0])|(3,[0,1,2],[3.0,1.0,2.0])|
|(3,[0,1,2],[4.0,7.0,9.0])|(3,[0,1,2],[4.0,3.0,2.0])|
|(3,[0,1,2],[2.0,4.0,9.0])|(3,[0,1,2],[2.0,0.0,2.0])|
|(3,[0,1,2],[9.0,5.0,7.0])|(3,[0,1,2],[9.0,1.0,1.0])|
|(3,[0,1,2],[2.0,5.0,9.0])|(3,[0,1,2],[2.0,1.0,2.0])|
|(3,[0,1,2],[3.0,4.0,9.0])|(3,[0,1,2],[3.0,0.0,2.0])|
|(3,[0,1,2],[8.0,4.0,9.0])|(3,[0,1,2],[8.0,0.0,2.0])|
|(3,[0,1,2],[3.0,6.0,2.0])|(3,[0,1,2],[3.0,2.0,0.0])|
|(3,[0,1,2],[5.0,9.0,2.0])|(3,[0,1,2],[5.0,4.0,0.0])|
+-------------------------+-------------------------+ 结果分析:特征向量包含3个特征,即特征0,特征1,特征2。如Row=1,对应的特征分别是2.0,5.0,7.0.被转换为2.0,1.0,1.0。 咱们发现只有特征1,特征2被转换了,特征0没有被转换。这是由于特征0有6中取值(2,3,4,5,8,9),多于前面的设置setMaxCategories(5) ,所以被视为连续值了,不会被转换。 特征1中,(4,5,6,7,9)-->(0,1,2,3,4,5) 特征2中, (2,7,9)-->(0,1,2) 输出DataFrame格式说明(Row=1): 3个特征 特征0,1,2 转换前的值 |(3, [0,1,2], [2.0,5.0,7.0]) 3个特征 特征1,1,2 转换后的值 |(3, [0,1,2], [2.0,1.0,1.0])|
StringIndexer
理解了前面的VectorIndexer以后,StringIndexer对数据集的label进行从新编号就很容易理解了,都是采用相似的转换思路,看下面的例子就能够了。
ide
//定义一个StringIndexerModel,将label转换成indexedlabel
StringIndexerModel labelIndexerModel=new StringIndexer(). setInputCol("label") .setOutputCol("indexedLabel") .fit(rawData); //加labelIndexerModel加入到Pipeline中
Pipeline pipeline=new Pipeline() .setStages(new PipelineStage[] {labelIndexerModel, featureIndexerModel, dtClassifier, converter}); //查看结果
pipeline.fit(rawData).transform(rawData).select("label","indexedLabel").show(20,false); 按label出现的频次,转换成0~num numOfLabels-1(分类个数),频次最高的转换为0,以此类推: label=3,出现次数最多,出现了4次,转换(编号)为0 其次是label=2,出现了3次,编号为1,以此类推 +-----+------------+
|label|indexedLabel|
+-----+------------+
|3.0 |0.0 |
|4.0 |3.0 |
|1.0 |2.0 |
|3.0 |0.0 |
|2.0 |1.0 |
|3.0 |0.0 |
|2.0 |1.0 |
|3.0 |0.0 |
|2.0 |1.0 |
|1.0 |2.0 |
+-----+------------+
在其它地方应用StringIndexer时还须要注意两个问题:
(1)StringIndexer本质上是对String类型–>index( number);若是是:数值(numeric)–>index(number),其实是对把数值先进行了类型转换( cast numeric to string and then index the string values.),也就是说不管是String,仍是数值,均可以从新编号(Index);
(2)利用得到的模型转化新数据集时,可能遇到异常状况,见下面例子。函数
StringIndexer对String按频次进行编号 id | category | categoryIndex ----|----------|---------------
0 | a | 0.0
1 | b | 2.0
2 | c | 1.0
3 | a | 0.0
4 | a | 0.0
5 | c | 1.0 若是转换模型(关系)是基于上面数据获得的 (a,b,c)->(0.0,2.0,1.0),若是用此模型转换category多于(a,b,c)的数据,好比多了d,e,就会遇到麻烦: id | category | categoryIndex ----|----------|---------------
0 | a | 0.0
1 | b | 2.0
2 | d | ? 3 | e | ? 4 | a | 0.0
5 | c | 1.0 Spark提供了两种处理方式: StringIndexerModel labelIndexerModel=new StringIndexer(). setInputCol("label") .setOutputCol("indexedLabel") //.setHandleInvalid("error")
.setHandleInvalid("skip") .fit(rawData); (1)默认设置,也就是.setHandleInvalid("error"):会抛出异常 org.apache.spark.SparkException: Unseen label: d,e (2).setHandleInvalid("skip") 忽略这些label所在行的数据,正常运行,将输出以下结果: id | category | categoryIndex ----|----------|---------------
0 | a | 0.0
1 | b | 2.0
4 | a | 0.0
5 | c | 1.0
IndexToString
相应的,有StringIndexer,就应该有IndexToString。在应用StringIndexer对labels进行从新编号后,带着这些编号后的label对数据进行了训练,并接着对其余数据进行了预测,获得预测结果,预测结果的label也是从新编号过的,所以须要转换回来。见下面例子,转换回来的convetedPrediction才和原始的label对应。
编码
Symmetrically to StringIndexer, IndexToString maps a column of label indices back to a column containing the original labels as strings.
A common use case is to produce indices from labels with StringIndexer, train a model with those indices and retrieve the original labels from the column of predicted indices with IndexToString.
IndexToString converter=new IndexToString() .setInputCol("prediction")//Spark默认预测label行
.setOutputCol("convetedPrediction")//转换回来的预测label
.setLabels(labelIndexerModel.labels());//须要指定前面建好相互相互模型
Pipeline pipeline=new Pipeline() .setStages(new PipelineStage[] {labelIndexerModel, featureIndexerModel, dtClassifier, converter}); pipeline.fit(rawData).transform(rawData) .select("label","prediction","convetedPrediction").show(20,false); |label|prediction|convetedPrediction|
+-----+----------+------------------+
|3.0 |0.0 |3.0 |
|4.0 |1.0 |2.0 |
|1.0 |2.0 |1.0 |
|3.0 |0.0 |3.0 |
|2.0 |1.0 |2.0 |
|3.0 |0.0 |3.0 |
|2.0 |1.0 |2.0 |
|3.0 |0.0 |3.0 |
|2.0 |1.0 |2.0 |
|1.0 |2.0 |1.0 |
+-----+----------+------------------+
离散<->连续特征或Label相互转换
oneHotEncoder
独热编码将类别特征(离散的,已经转换为数字编号形式),映射成独热编码。这样在诸如Logistic回归这样须要连续数值值做为特征输入的分类器中也可使用类别(离散)特征。
spa
独热编码即 One-Hot 编码,又称一位有效编码,其方法是使用N位 状态寄存 器来对N个状态进行编码,每一个状态都由他独立的寄存器 位,而且在任意 时候,其 中只有一位有效。 例如: 天然状态码为:000,001,010,011,100,101 独热编码为:000001,000010,000100,001000,010000,100000 能够这样理解,对于每个特征,若是它有m个可能值,那么通过独 热编码 后,就变成了m个二元特征。而且,这些特征互斥,每次只有 一个激活。因 此,数据会变成稀疏的。 这样作的好处主要有: 解决了分类器很差处理属性数据的问题 在必定程度上也起到了扩充特征的做用
One-hot encoding maps a column of label indices to a column of binary vectors, with at most a single one-value. This encoding allows algorithms which expect continuous features, such as Logistic Regression, to use categorical features..net
//onehotencoder前须要转换为string->numerical
Dataset indexedDf=new StringIndexer() .setInputCol("category") .setOutputCol("indexCategory") .fit(df) .transform(df); //对随机分布的类别进行OneHotEncoder,转换后能够当成连续数值输入
Dataset coderDf=new OneHotEncoder() .setInputCol("indexCategory") .setOutputCol("ontHotCategory")//不须要fit
.transform(indexedDf);
Bucketizer
分箱(分段处理):将连续数值转换为离散类别
code
好比特征是年龄,是一个连续数值,须要将其转换为离散类别(未成年人、青年人、中年人、老年人),就要用到Bucketizer了。
分类的标准是本身定义的,在Spark中为split参数,定义以下:
double[] splits = {0, 18, 35,50, Double.PositiveInfinity}
将数值年龄分为四类0-18,18-35,35-50,55+四个段。
若是左右边界拿不许,就设置为,Double.NegativeInfinity, Double.PositiveInfinity,不会有错的。
Bucketizer transforms a column of continuous features to a column of feature buckets, where the buckets are specified by users.
// double[] splits={0,18,35,55,Double.POSITIVE_INFINITY};Dataset bucketDf=new Bucketizer() .setInputCol("ages") .setOutputCol("bucketCategory") .setSplits(splits)//设置分段标准
.transform(df); //输出 /* +---+----+--------------+ |id |ages|bucketCategory| +---+----+--------------+ |0.0|2.0 |0.0 | |1.0|67.0|3.0 | |2.0|36.0|2.0 | |3.0|14.0|0.0 | |4.0|5.0 |0.0 | |5.0|98.0|3.0 | |6.0|65.0|3.0 | |7.0|23.0|1.0 | |8.0|37.0|2.0 | |9.0|76.0|3.0 | +---+----+--------------+ */
QuantileDiscretizer
分位树为数离散化,和Bucketizer(分箱处理)同样也是:将连续数值特征转换为离散类别特征。实际上Class QuantileDiscretizer extends (继承自) Class(Bucketizer)。
orm
blog参数1:不一样的是这里再也不本身定义splits(分类标准),而是定义分几箱(段)就能够了。QuantileDiscretizer本身调用函数计算分位数,并完成离散化。
-参数2: 另一个参数是精度,若是设置为0,则计算最精确的分位数,这是一个高时间代价的操做。另外上下边界将设置为正负无穷,覆盖全部实数范围。
QuantileDiscretizer takes a column with continuous features and outputs a column with binned categorical features. The number of bins is set by the numBuckets parameter.
The bin ranges are chosen using an approximate algorithm (see the documentation for approxQuantile for a detailed description).
The precision of the approximation can be controlled with the relativeError parameter. When set to zero, exact quantiles are calculated (Note: Computing exact quantiles is an expensive operation).
The lower and upper bin bounds will be -Infinity and +Infinity covering all real values.
new QuantileDiscretizer() .setInputCol("ages") .setOutputCol("qdCategory") .setNumBuckets(4)//设置分箱数
.setRelativeError(0.1)//设置precision-控制相对偏差
.fit(df) .transform(df) .show(10,false); //例子:
+---+----+----------+
|id |ages|qdCategory|
+---+----+----------+
|0.0|2.0 |0.0 |
|1.0|67.0|3.0 |
|2.0|36.0|2.0 |
|3.0|14.0|1.0 |
|4.0|5.0 |0.0 |
|5.0|98.0|3.0 |
|6.0|65.0|2.0 |
|7.0|23.0|1.0 |
|8.0|37.0|2.0 |
|9.0|76.0|3.0 |
+---+----+----------+
转载自:https://blog.csdn.net/shenxiaoming77/article/details/63715525