语义分割:给图像的每一个像素点标注类别。一般认为这个类别与邻近像素类别有关,同时也和这个像素点归属的总体类别有关。利用图像分类的网络结构,能够利用不一样层次的特征向量来知足断定需求。现有算法的主要区别是如何提升这些向量的分辨率,以及如何组合这些向量。python
超参数:epochs=50,lr=0.001,optim=SGD,momentum=0.7u
数据集:Bag,resize(160,160),batch_size=4
注意vgg16正确的层号,每层最后一个是池化。git
feats = list(models.vgg16(pretrained=True).features.children()) self.feat1 = nn.Sequential(*feats[0:5]) self.feat2 = nn.Sequential(*feats[5:10]) self.feat3 = nn.Sequential(*feats[10:17]) self.feat4 = nn.Sequential(*feats[17:24]) self.feat5 = nn.Sequential(*feats[24:31])
1*1卷积+标签收缩(到对应层尺寸)github
网络层 | 单epoch时间(s) | mIOU(%) | pixel-acc(%) | GPU(G) |
---|---|---|---|---|
5 | 8 | 82 | 90 | 1.1 |
4 | 8 | 86 | 93 | 1.0 |
3 | 6 | 80 | 90 | 1.0 |
1*1卷积+上采样(2倍)+标签收缩算法
网络层 | 单epoch时间(s) | mIOU(%) | pixel-acc(%) | GPU(G) |
---|---|---|---|---|
5->4 | 8 | 72 | 85 | 1.1 |
4->3 | 6 | 80 | 90 | 1.0 |
3->2 | 5 | 78 | 88 | 1.0 |
1*1卷积+转置卷积(2倍)+标签收缩网络
网络层 | 单epoch时间(s) | mIOU(%) | pixel-acc(%) | GPU(G) |
---|---|---|---|---|
5->4 | 8 | 79 | 89 | 1.1 |
4->3 | 6 | 84 | 92 | 1.0 |
3->2 | 5 | 80 | 90 | 1.0 |
反池化(2倍)+1*1卷积+标签收缩dom
网络层 | 单epoch时间(s) | mIOU(%) | pixel-acc(%) | GPU(G) |
---|---|---|---|---|
5->4 | 8 | 84 | 92 | 1.1 |
4->3 | 7 | 87 | 94 | 1.1 |
3->2 | 5 | 84 | 91 | 1.0 |
池化(stride=1)+2*2卷积(stride=1,padding=1)+标签收缩ide
网络层 | 单epoch时间(s) | mIOU(%) | pixel-acc(%) | GPU(G) |
---|---|---|---|---|
5->4 | 8 | 84 | 92 | 1.1 |
4->3 | 7 | 89 | 95 | 1.0 |
3->2 | 7 | 80 | 90 | 1.1 |
上采样(逐层,直到原始尺寸)+1*1卷积+求和(FCN)函数
网络层 | 单epoch时间(s) | mIOU(%) | pixel-acc(%) | GPU(G) |
---|---|---|---|---|
5 | 8 | 82 | 91 | 1.2 |
5+4 | 8 | 88 | 94 | 1.2 |
5+4+3 | 9 | 88 | 94 | 1.2 |
上采样(逐层,直到原始尺寸)+1*1卷积+拼接(UNET')性能
网络层 | 单epoch时间(s) | mIOU(%) | pixel-acc(%) | GPU(G) |
---|---|---|---|---|
5 | 8 | 82 | 91 | 1.2 |
5+4 | 9 | 87 | 93 | 1.2 |
5+4+3 | 9 | 89 | 94 | 1.1 |
上采样(直接达到原始尺寸)+1*1卷积+拼接(PSPNET')测试
网络层 | 单epoch时间(s) | mIOU(%) | pixel-acc(%) | GPU(G) |
---|---|---|---|---|
5 | 8 | 84 | 92 | 1.2 |
5+4 | 9 | 87 | 93 | 1.2 |
5+4+3 | 8 | 88 | 94 | 1.2 |
反池化(逐层)+1*1卷积+上采样(SegNet')
网络层 | 单epoch时间(s) | mIOU(%) | pixel-acc(%) | GPU(G) |
---|---|---|---|---|
5 | 8 | 82 | 91 | 1.1 |
5->4 | 8 | 88 | 94 | 1.1 |
5->4->3 | 9 | 89 | 95 | 1.1 |
epochs=100,lr=3e-3
网络 | 单epoch时间(s) | mIOU(%) | pixel-acc(%) | GPU(G) |
---|---|---|---|---|
PSPNET(反池化) | 8 | 91 | 96 | 1.1 |
PSPNET(池化,stride=1) | 9 | 91 | 96 | 1.2 |