Sentinel Client: 整合Apollo规则持久化

在前面的学习过程当中,Sentinel 的规则,也就是咱们以前定义的限流规则,是经过代码的方式定义好的。这是初始化时须要作的事情,Sentinel 提供了基于API的方式修改规则:git

FlowRuleManager.loadRules(List<FlowRule> rules); // 修改流控规则
DegradeRuleManager.loadRules(List<DegradeRule> rules); // 修改降级规则
SystemRuleManager.loadRules(List<SystemRule> rules); // 修改系统规则
AuthorityRuleManager.loadRules(List<AuthorityRule> rules); // 修改受权规则

当咱们接入了控制台后,能够经过控制台进行规则的动态修改,问题是当应用程序重启后规则信息就会恢复到初始化的阶段,也就是说后面修改的值会丢失,由于规则信息都是存储在应用的内存中。github

为了解决这个问题Sentinel 提供了DataSource 扩展的功能,官方推荐经过控制台设置规则后将规则推送到统一的规则中心,客户端实现 ReadableDataSource 接口端监听规则中心实时获取变动,流程以下:json

扩展的常见方式有推和拉两种模式:微信

  • 拉模式:客户端主动向某个规则管理中心按期轮询拉取规则,这个规则中心能够是 RDBMS、文件,甚至是 VCS 等。这样作的方式是简单,缺点是没法及时获取变动;
  • 推模式:规则中心统一推送,客户端经过注册监听器的方式时刻监听变化,好比使用 NacosApollo、Zookeeper 等配置中心。这种方式有更好的实时性和一致性保证。

今天咱们主要是讲如何使用 Apollo 来配置规则进行持久化,Apollo是携程开源的配置中心,很是好用app

Github地址:https://github.com/ctripcorp/...ide

在个人书中也有对Apollo使用的详细介绍,等出版了再通知你们。学习

首先集成须要的依赖:this

<dependency>
    <groupId>com.alibaba.csp</groupId>
    <artifactId>sentinel-datasource-apollo</artifactId>
    <version>1.4.1</version>
</dependency>

而后建立 ApolloDataSource 并将其注册至对应的 RuleManager 上便可。好比:spa

private static void loadRules() {
        // Apollo 中的应用名称,本身定义的
        String appId = "SampleApp";
        // Apollo 的地址
        String apolloMetaServerAddress = "http://localhost:8080";
        System.setProperty("app.id", appId);
        System.setProperty("apollo.meta", apolloMetaServerAddress);
        // 指定环境
        System.setProperty("env", "DEV");
        // Apollo 的命名空间
        String namespaceName = "application";
        // 限流规则的Key, 在Apollo中用此Key
        String flowRuleKey = "flowRules";
        // 限流规则的默认值
        String defaultFlowRules = "[]";
        // 注册数据源
        ReadableDataSource<String, List<FlowRule>> flowRuleDataSource = new ApolloDataSource<>(namespaceName,
            flowRuleKey, defaultFlowRules, source -> JSON.parseObject(source, new TypeReference<List<FlowRule>>() {
        }));
        FlowRuleManager.register2Property(flowRuleDataSource.getProperty());
}

到此为止配置就结束了,详细的解释我都写了注释哈。官方文档也是这么写的,问题是若是你刚接触会一头雾水的,为何?code

你不知道在Apollo中怎么配置啊,咱们讲的就是说能够用Apollo来做为存储,持久化规则,那么规则怎么配置就须要咱们本身去想。

我也是经过看源码才知道怎么去配置的,带着你们一块儿来看源码吧!

主要就是new ApolloDataSource这里,参数都是经过这里传进去的

public ApolloDataSource(String namespaceName, String flowRulesKey, String defaultFlowRuleValue,
                            Converter<String, T> parser) {
        super(parser);

        Preconditions.checkArgument(!Strings.isNullOrEmpty(namespaceName), "Namespace name could not be null or empty");
        Preconditions.checkArgument(!Strings.isNullOrEmpty(flowRulesKey), "FlowRuleKey could not be null or empty!");

        this.flowRulesKey = flowRulesKey;
        this.defaultFlowRuleValue = defaultFlowRuleValue;

        this.config = ConfigService.getConfig(namespaceName);

        initialize();

        RecordLog.info(String.format("Initialized rule for namespace: %s, flow rules key: %s",
            namespaceName, flowRulesKey));
    }

这边就是对传入的参数赋值,而后看下面这行:

this.config = ConfigService.getConfig(namespaceName);

这就是经过命名空间去Apollo中获取配置,获取完后就执行初始化

private void initialize() {
     initializeConfigChangeListener();
     loadAndUpdateRules();
}

initializeConfigChangeListener是初始化配置的监听器,当配置发生修改时会进入该监听器,也就是说在这个监听器里须要监听配置的修改,而后更新规则

private void initializeConfigChangeListener() {
        config.addChangeListener(new ConfigChangeListener() {
            @Override
            public void onChange(ConfigChangeEvent changeEvent) {
                ConfigChange change = changeEvent.getChange(flowRulesKey);
                //change is never null because the listener will only notify for this key
                if (change != null) {
                    RecordLog.info("[ApolloDataSource] Received config changes: " + change.toString());
                }
                loadAndUpdateRules();
            }
        }, Sets.newHashSet(flowRulesKey));
 }

loadAndUpdateRules就是更新规则的逻辑了

private void loadAndUpdateRules() {
        try {
            T newValue = loadConfig();
            if (newValue == null) {
                RecordLog.warn("[ApolloDataSource] WARN: rule config is null, you may have to check your data source");
            }
            getProperty().updateValue(newValue);
        } catch (Throwable ex) {
            RecordLog.warn("[ApolloDataSource] Error when loading rule config", ex);
        }
 }

那么配置是怎么来的呢,请看loadConfig

@Override
 public T loadConfig() throws Exception {
     return loadConfig(readSource());
 }

 public T loadConfig(S conf) throws Exception {
     T value = parser.convert(conf);
     return value;
 }

readSource就是获取咱们配置的flowRulesKey的值,那么配置其实就是一个字符串,而后下面经过Json转换

public String readSource() throws Exception {
     return config.getProperty(flowRulesKey, defaultFlowRuleValue);
 }

咱们再返过来看看注册的代码:

// 注册数据源
 ReadableDataSource<String, List<FlowRule>> flowRuleDataSource = new ApolloDataSource<>(namespaceName,
            flowRuleKey, defaultFlowRules, source -> JSON.parseObject(source, new TypeReference<List<FlowRule>>() {
 }));

重点是ource -> JSON.parseObject(source, new TypeReference<List<FlowRule>>()这行,这不就是转换成List<FlowRule>吗,真相呼之欲出了,也就是在Apollo中配置的就是List<FlowRule>的json格式就行。

咱们配置一个试试看:

flowRules = [{"grade":1,"count":11,"resource":"HelloWorld"}]

点击保存而且发布,能够在initializeConfigChangeListener里面设置一个断点,你会发现,当发布配置以后,这边立刻就会进来,而后执行其余的逻辑,到此为止整个流程结束。

欢迎加入个人知识星球,一块儿交流技术,免费学习猿天地的课程(http://cxytiandi.com/course

PS:目前星球中正在星主的带领下组队学习Sentinel,等你哦!

微信扫码加入猿天地知识星球

猿天地

相关文章
相关标签/搜索