现现在密码验证已经变得越加越方便简洁了,从之前的密码到如今的人脸识别已经有了质的飞跃。但随着密码验证变得越加越简单,密码安全这个问题便铺面而来,如何保证密码的安全,在现在的时代,如何保证人脸识别可以准确的识别我的用户,而不被黑客盗取,已经成为了众所关注的问题。数据库
今年的315晚会提到人脸识别领域的安全风险,主持人用现场合成的视频经过了活体检测和人脸验证,所以人脸识别的安全性引发大众关注。对于活体检测的安全隐患,腾讯优图团队一直保持高度关注,并依托多年积累的技术能力和业务运营经验,已经对人脸识别技术手段进行过屡次安全升级,让人脸识别更安全。安全
1 、纸片翻拍,经过打印用户的照片进行攻击;
二、 屏幕翻拍,一些3D建模技术能够驱动用户的单张照片或视频作出系统要求的摇头、张嘴、眨眼等动做;
三、 用户戴面具;网络
要更有效地应对上述的人脸识别漏洞,咱们不妨采用腾讯优图多维活体监测模式。学习
腾讯优图的多维活体监测是什么?大数据
即经过更加复杂的多数字随机唇语,捕捉人在说话过程当中嘴部的细微变化,使得视频合成造假的难度很大;并加上语音图像同步检测、人脸纹理分析、面具检测、视频防翻拍等多维度防御手段;最后将全部这些手段进行交叉融合,实现移动端+后台的强力防御体系。视频
具体来讲:排序
一、对于纸片翻拍,因为纸片上的人脸是静态的,利用随机数字唇语,让用户读数字,就能够很好的拦截;图片
二、对于屏幕翻拍,具备成本低,能够经过软件批量执行的特色,对于活体的挑战最大,这种攻击,仍然有不少线索能够利用:get
a. 翻拍的视频必定会经过显示设备播放出来,显示设备存在一些和真人不一样的图像特征
b.合成的视频与真人相比,会存在一些瑕疵
c.若是是直接拿到了用户的一段视频,其嘴型变化彻底符合给定的随机数字的几率很低同步
以上这些,用大量数据就能够学习到伪造视频和真人视频之间的区别,加上各类方法的融合,就能将拦截成功率提升到很是高的水平。
三、对于用户戴面具,因为其攻破成本较高,如今还未出现实际case,咱们也提早进行了研发布防,主要利用人说话时,面部会存在比较天然的微动,而面具则没有这样的规律来防范。
另外,在实际业务中,人脸识别只是做为其中一个环节,须要与帐号、密码保护、基于大数据的风控等其余综合手段一块儿,保证流程的高度安全。
人脸识别技术正在快速发展之中,新技术的出现总可能会被不法分子所利用。腾讯优图也在关注技术对抗,经过业务持续积累的活体攻防实战经验,构筑活体检测的坚实壁垒,同时不断创新研发新的活体检测技术,为人脸识别保驾护航。
1.产品优点
强大的人脸训练模型:立足于腾讯社交数据大平台收集的海量人脸训练集,成功标注的千万人脸数据。
方法最全:高维LBP、PCA、LDA 联合贝叶斯、度量学习、迁移学习、深度神经网络
技术最好: 优图首创Uface深度人脸模型,LFW评测以99.65%目前世界领先。
2.人脸验证技术(1:1识别)
人脸识别技术能够计算出两张人脸照片的类似度,从而判断是否为同一人,即1:1身份验证。优图人脸识别经过传统方法和深度学习技术结合,以微众银行远程核身为基础,实际业务中,万分之一错误率下,经过率达到95%。
3.人脸检索技术(1:N识别)
给定一张照片,和数据库中N我的脸进行对比,给出是否为其中某一我的,或者给出排序结果,即人脸检索。1:N用于用户不须要声明身份的场景。
人脸检索
4.技术指标
• FAR:False Accept Rate,错误接受率,指将身份不一样的两张照片,判别为相同身份,越低越好
• FRR:False Reject Rate,错误拒绝率,指将身份相同的两张照片,判别为不一样身份,越低越好
这两个指标有明确的物理意义,FAR决定了系统的安全性,FRR决定了系统的易用程度,在实际中,FAR对应的风险远远高于FRR,所以,生物识别系统中,会将FAR设置为一个很是低的范围,如万分之一甚至百万分之一,在FAR固定的条件下,FRR低于5%,这样的系统才有实用价值。
• 支持最小人脸尺寸64x64
• 人脸特征尺寸1-2KB
• 1:1人脸对比500ms
门禁系统:
受安全保护的地区能够经过人脸识别辨识试图进入者的身份,好比小区、学校、企业等。敏感地点也可使用人脸识别门禁,未登记人员访问将触发报警。
摄像监视系统:
在例如银行、机场、体育场、商场、超级市场等公共场所对人群进行监视,以达到身份识别的目的。同时疑犯布控追踪也是较为常见的应用场景。
学生考勤系统:
香港及澳门的中、小学已开始将智能卡配合人脸识别来为学生进行天天的出席点名记录,内地高校也进行了有关试点。
娱乐应用:
自动美妆美图、人脸属性识别、颜值分析,都是已经成熟使用的娱乐场景。
文章出自腾讯云技术社区
https://www.qcloud.com/community/article/262632001489735705