Java并发核心浅谈(二)

回顾

在上一篇 Java并发核心浅谈 咱们大概了解到了Locksynchronized的共同点,再简单总结下:java

  • Lock主要是自定义一个 counter,从而利用CAS对其实现原子操做,而synchronizedc++ hotspot实现的 monitor(具体的咱也没看,咱就不说)
  • 两者均可重入(递归,互调,循环),其本质都是维护一个可计数的 counter,在其它线程访问加锁对象时会判断 counter 是否为 0
  • 理论上讲两者都是阻塞式的,由于线程在拿锁时,若是拿不到,最终的结果只能等待(前提是线程的最终目的就是要获取锁)读写锁分离成两把锁了,因此不同

举个例子:线程 A 持有了某个对象的 monitor,其它线程在访问该对象时,发现 monitor 不为 0,因此只能阻塞挂起或者加入等待队列,等着线程 A 处理完退出后将 monitor 置为 0。在线程 A 处理任务期间,其它线程要么循环访问 monitor,要么一直阻塞等着线程 A 唤醒,再不济就真的如我所说,放弃锁的竞争,去处理别的任务。可是应该作不到去处理别的任务后,任务处理到一半,被线程 A 通知后再回去抢锁node

公平锁与非公平锁

不共享 counterc++

// 非公平锁在第一次拿锁失败也会调用该方法
        public final void acquire(int arg) {
        // 没拿到锁就加入队列
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
        }
        
        // 非公平锁方法
        final void lock() {
            // 走来就尝试获取锁
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1); // 上面那个方法
        }
        
        // 公平锁 Acquire 计数
        protected final boolean tryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            // 拿到计数
            int c = getState();
            if (c == 0) {
                // 公平锁会先尝试排队 非公平锁少个 !hasQueuedPredecessors() 其它代码同样
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0)  // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
        
        /** * @return {@code true} if there is a queued thread preceding the // 当前线程前有线程等待,则排队 * current thread, and {@code false} if the current thread * is at the head of the queue or the queue is empty // 队列为空不用排队 * @since 1.7 */
        public final boolean hasQueuedPredecessors() {
            // The correctness of this depends on head being initialized
            // before tail and on head.next being accurate if the current
            // thread is first in queue.
            Node t = tail; // Read fields in reverse initialization order
            Node h = head;
            Node s;
            // 当前线程处于头节点的下一个且不为空则不用排队
            // 或该线程就是当前持有锁的线程,即重入锁,也不用排队
            return h != t &&
                ((s = h.next) == null || s.thread != Thread.currentThread());
        }
        
        // 加入等待队列
        final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                // 获取失败会检查节点状态
                // 而后 park 线程
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    
        /** waitStatus value to indicate thread has cancelled */
        static final int CANCELLED =  1; // 线程取消加锁
        /** waitStatus value to indicate successor's thread needs unparking */
        static final int SIGNAL    = -1;  // 解除线程 park
        /** waitStatus value to indicate thread is waiting on condition */ // 
        static final int CONDITION = -2; // 线程被阻塞
        /** * waitStatus value to indicate the next acquireShared should * unconditionally propagate */
        static final int PROPAGATE = -3; // 广播
        
        // 官方注释
        /** * Status field, taking on only the values: * SIGNAL: The successor of this node is (or will soon be) * blocked (via park), so the current node must * unpark its successor when it releases or * cancels. To avoid races, acquire methods must * first indicate they need a signal, * then retry the atomic acquire, and then, * on failure, block. * CANCELLED: This node is cancelled due to timeout or interrupt. * Nodes never leave this state. In particular, * a thread with cancelled node never again blocks. * CONDITION: This node is currently on a condition queue. * It will not be used as a sync queue node * until transferred, at which time the status * will be set to 0. (Use of this value here has * nothing to do with the other uses of the * field, but simplifies mechanics.) * PROPAGATE: A releaseShared should be propagated to other * nodes. This is set (for head node only) in * doReleaseShared to ensure propagation * continues, even if other operations have * since intervened. * 0: None of the above * * The values are arranged numerically to simplify use. * Non-negative values mean that a node doesn't need to * signal. So, most code doesn't need to check for particular * values, just for sign. * * The field is initialized to 0 for normal sync nodes, and * CONDITION for condition nodes. It is modified using CAS * (or when possible, unconditional volatile writes). */
        volatile int waitStatus;
复制代码

读锁与写锁(共享锁与排他锁)

读锁:共享 counter缓存

写锁:不共享 counter并发

// 读写锁和线程池的相似之处
        // 高 16 位为读计数,低 16 位为写计数
        static final int SHARED_SHIFT   = 16;
        static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
        static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
        static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;

        /** Returns the number of shared holds represented in count. */ // 获取读计数
        static int sharedCount(int c) { return c >>> SHARED_SHIFT; }
        /** Returns the number of exclusive holds represented in count. */ // 获取写计数
        static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
        
        /** * A counter for per-thread read hold counts. 每一个线程本身的读计数 * Maintained as a ThreadLocal; cached in cachedHoldCounter. */
        static final class HoldCounter {
            int count;          // initially 0
            // Use id, not reference, to avoid garbage retention
            final long tid = LockSupport.getThreadId(Thread.currentThread()); // 线程 id
        }
        
    // 尝试获取读锁
    protected final int tryAcquireShared(int unused) {
            // ReentrantReadWriteLock ReadLock 读锁
            /* * Walkthrough: * 1. If write lock held by another thread, fail. * 2. Otherwise, this thread is eligible for * lock wrt state, so ask if it should block * because of queue policy. If not, try * to grant by CASing state and updating count. * Note that step does not check for reentrant * acquires, which is postponed to full version * to avoid having to check hold count in * the more typical non-reentrant case. * 3. If step 2 fails either because thread * apparently not eligible or CAS fails or count * saturated, chain to version with full retry loop. */
            Thread current = Thread.currentThread();
            int c = getState();
            // 若是写锁计数不为零,且当前线程不是写锁持有线程,则能够得到读锁
            // 言外之意,得到写锁的线程不能够再得到读锁
            // 我的认为不用判断写计数也行
            if (exclusiveCount(c) != 0 &&
                getExclusiveOwnerThread() != current)
                return -1;
            // 得到读计数
            int r = sharedCount(c);
            // 检查等待队列 读计数上限
            if (!readerShouldBlock() &&
                r < MAX_COUNT &&
                // 在高 16 位更新
                compareAndSetState(c, c + SHARED_UNIT)) {
                if (r == 0) {
                    firstReader = current;
                    firstReaderHoldCount = 1;
                } else if (firstReader == current) {
                    firstReaderHoldCount++;
                } else {
                    HoldCounter rh = cachedHoldCounter;
                    if (rh == null ||
                        rh.tid != LockSupport.getThreadId(current))
                        // cachedHoldCounter 每一个线程本身的读计数,非共享。可是锁计数与其它读操做共享,不与写操做共享
                        // readHolds 为ThreadLocalHoldCounter,继承于 ThreadLocal,存 cachedHoldCounter
                        cachedHoldCounter = rh = readHolds.get();
                    else if (rh.count == 0)
                        readHolds.set(rh);
                    rh.count++;
                }
                return 1;
            }
            // 说明在排队中,就一直遍历,直到队首,实际起做用的代码和上面代码差很少
            // 大师本人也说了代码有冗余
             /* * This code is in part redundant with that in * tryAcquireShared but is simpler overall by not * complicating tryAcquireShared with interactions between * retries and lazily reading hold counts. */
            return fullTryAcquireShared(current);
        }
        
    // 得到写锁 
    protected final boolean tryAcquire(int acquires) {
            /* * Walkthrough: * 1. If read count nonzero or write count nonzero * and owner is a different thread, fail. * 读锁不为零(读锁排除写锁,可是与读锁共享) * 写锁不为零且锁持有者不为当前线程,则得到锁失败 * 2. If count would saturate, fail. (This can only * happen if count is already nonzero.) // 计数器已达最大值,得到锁失败 * 3. Otherwise, this thread is eligible for lock if * it is either a reentrant acquire or * queue policy allows it. If so, update state * and set owner. // 重入是能够的;队列策略也是能够的,会在下面解释 */
            Thread current = Thread.currentThread();
            int c = getState();
            // 得到写计数
            int w = exclusiveCount(c);
            if (c != 0) {
                // (Note: if c != 0 and w == 0 then shared count != 0)
                // 检查所持有线程
                if (w == 0 || current != getExclusiveOwnerThread())
                    return false;
                // 检查最大计数
                if (w + exclusiveCount(acquires) > MAX_COUNT)
                    throw new Error("Maximum lock count exceeded");
                // Reentrant acquire 线程重入得到锁,直接更新计数
                setState(c + acquires);
                return true;
            }
            // 队列策略
            // state 为 0,检查是否须要排队
            // 针对公平锁:去排队,若是当前线程在队首或等待队列为空,则返回 false,天然会走后面的 CAS
            // 不然就返回 true,则进入 return false;
            // 针对非公平锁:写死为 false,直接 CAS
            if (writerShouldBlock() ||
                !compareAndSetState(c, c + acquires))
                return false;
            // 设置当前写锁持有线程
            setExclusiveOwnerThread(current);
            return true;
        }    
    
    // 由于读锁是多个线程共享读计数,各自维护了本身的读计数,因此释放的时候比写锁释放要多些操做
     protected final boolean tryReleaseShared(int unused) {
            Thread current = Thread.currentThread();
            // 当前线程是第一读线程的操做
            // firstReader 做为字段缓存,是考虑到第一次读的线程使用率高?
            if (firstReader == current) {
                // assert firstReaderHoldCount > 0;
                if (firstReaderHoldCount == 1)
                    firstReader = null;
                else
                    firstReaderHoldCount--;
            } else {
                HoldCounter rh = cachedHoldCounter;
                if (rh == null ||
                    rh.tid != LockSupport.getThreadId(current))
                    rh = readHolds.get();
                int count = rh.count;
                if (count <= 1) {
                    readHolds.remove();
                    if (count <= 0)
                        throw unmatchedUnlockException();
                }
                --rh.count;
            }
            for (;;) {
                int c = getState();
                int nextc = c - SHARED_UNIT;
                if (compareAndSetState(c, nextc))
                    // Releasing the read lock has no effect on readers,
                    // but it may allow waiting writers to proceed if
                    // both read and write locks are now free.
                    return nextc == 0;
            }
        }
复制代码

总结一下

公平锁和非公平锁的“锁”实现是基于CAS,公平性基于内部维护的Node链表app

读写锁,能够粗略的理解为读和写两种状态,因此这儿的设计相似线程池的状态。只不过,读计数是能够多个读线程是共享的(排除写锁),每一个读的线程都会维护本身的读计数。写锁的话,独占写计数,排除一切其余线程。oop

相关文章
相关标签/搜索