C-01背包问题

【声明】:很是感谢http://blog.sina.com.cn/s/blog_6dcd26b301013810.html,给我带来的帮助。html

看这个图片表示的意思:web

w[i]表示第i件物品的容积 ,p[i]第i件物品的价值。数组

c[i][j] 表示 第i件物品装入容积为j 的空间中的最高价值。 其中i是物品编号,j表明当前背包的容积。优化

很是重要的状态转移方程:spa

  C[i][j] = max(C[i-1][j],C[i-1][j-w[i]]+p[i])code

C[i-1][j]表示放第i-1件物品,背包容量为j的总价值。orm

C[i-1][j-w[i]]表示存放第i-1件物品,背包容量为  j-w[i] 的总价值;再加上当前第i件物品的价值htm

【也就是说在选择是否是要放一件物品时,就看看不放该物件的价值 与 放了该物件的总价值 哪一个更大一点的问题。】blog

 

int knapsack(int m,int n)//总容量,物品数量
{
    int i,j,w[10],p[10];//每件物品的容量个价值
    for(i=1;i<n+1;i++)
    scanf("\n%d,%d",&w[i],&p[i]);

    for(i=0;i<10;i++)
        for(j=0;j<100;j++)
            c[i][j]=0;

    for(i=1;i<n+1;i++)//数量
        for(j=1;j<m+1;j++)
        {
            if(w[i]<=j){//j表示当前容量,当前容量若是小于该件物品的容量,
                        //也就是该件物品放不进去背包
                 if(p[i]+c[i-1][j-w[i]]>c[i-1][j])
                     c[i][j]=p[i]+c[i-1][j-w[i]];
                 else
                     c[i][j]=c[i-1][j];
            }else

                 c[i][j]=c[i-1][j];
         }
     return(c[n][m]);
}

 

 

 01图片

因为使用一维数组解01背包会被屡次用到,彻底背包的一种优化实现方式也是使用一维数组,因此咱们有必要理解这种方法。

若是只使用一维数组f[0…v],咱们要达到的效果是:

第i次循环结束后f[v]中所表示的就是使用二维数组时的f[i][v],即前i个物体面对容量v时的最大价值。

咱们知道f[v]是由两个状态得来的,f[i-1][v]和f[i-1][v-c[i]],使用一维数组时,当第i次循环以前时,f[v]实际上就是f[i-1][v],那么怎么获得第二个子问题(f[i-1][v-c[i]])的值呢?事实上,若是在每次循环中咱们以v=V…0的顺序推f[v]时,就能保证f[v-c[i]]存储的是f[i-1][v-c[i]]的状态。状态转移方程为:

v = V...0; f(v) = max{ f(v), f(v-c[i])+w[i] }

咱们能够与二维数组的状态转移方程对比一下

f(i,v) = max{ f(i-1,v), f(i-1,v-c[i])+w[i] }

 

 

仍是看上图:若是按照v=0-V的顺序的话,第一件物品存入包中和上图同样,当存入第二件物品的时候,v= 4时,价值为5。可是没有办法准确知道f[i-1][v-c[i]](即f[v-c[i])。【因为是一维数组,数据会被覆盖】

可是,若是按照v = V--0的顺序。存入第一件物品的时候,和上图是同样的,此时f[10] = ...=f[5] = 4,开始存放第二件物品的时候,v =V = 10;f(v) = max{ f(v), f(v-c[i])+w[i] }(即f[10] = max{f[10],f[10-c[2]+w[2]} = max{f[10],f[6]+w[2] = max{4,4+5} = 9);v = 9……以此类推就能够得出上图中的第二行。

 【再想不明白,本身按照上图执行一遍便可。】

 程序代码:

#include<stdio.h>
#include<stdlib.h>
#define MAXN 100+10

int f[MAXN];
int w[MAXN],c[MAXN];

int main()
{
    int N,V;
    int i=0,j;
    scanf("%d%d",&V,&N);
    for(i = 0;i<N;i++)
    {
        scanf("%d%d",&c[i],&w[i]);
    }
    memset(f,0,sizeof(f));
    for(i = 0;i<N;i++)
        for(j = V;j>=c[i];j--)
        {
           f[j] = f[j]>(f[j-c[i]]+w[i]) ? f[j]: f[j-c[i]]+w[i];
        }

    printf("max value si %d\n",f[V]);
    return 0;
}

这样一来就所有解决了问题了………………^__^

相关文章
相关标签/搜索