本文主要研究一下redis的HyperLogLog的用场html
每添加一个元素的复杂度为O(1)java
127.0.0.1:6379> pfadd uv0907 uid1 uid2 uid3 (integer) 1
做用域单个HyperLogLog时,复杂度为O(1),做用于多个HyperLogLog时,复杂度为O(N)redis
127.0.0.1:6379> pfcount uv0907 (integer) 3
复杂度为O(N),N为合并后的HyperLogLog数量算法
127.0.0.1:6379> pfadd uv0906 uid1 uid4 uid5 (integer) 1 127.0.0.1:6379> pfmerge uv0607 uv0906 uv0907 OK 127.0.0.1:6379> pfcount uv0607 (integer) 5
HyperLogLog是Probabilistic data Structures的一种,这类数据结构的基本大的思路就是使用统计几率上的算法,牺牲数据的精准性来节省内存的占用空间及提高相关操做的性能。最典型的使用场景就是统计网站的每日UV。实例以下:segmentfault
@Test public void testUv(){ String uv1 = "uv96"; String uv2 = "uv97"; IntStream.rangeClosed(1,100) .forEach(i -> { System.out.println(i); redisTemplate.opsForHyperLogLog() .add(uv1,"user"+i); redisTemplate.opsForHyperLogLog() .add(uv2,"user"+i/2); }); long uv1Count = redisTemplate.opsForHyperLogLog().size(uv1); System.out.println(uv1Count); long uv2Count = redisTemplate.opsForHyperLogLog().size(uv2); System.out.println(uv2Count); String uv1uv2 = "uv67"; Long uv1uv2Count = redisTemplate.opsForHyperLogLog().union(uv1uv2,uv1,uv2); System.out.println(uv1uv2Count); Long realCount = redisTemplate.opsForHyperLogLog().size(uv1uv2); System.out.println(realCount); }