JavaShuo
栏目
标签
Few-shot Learning with Graph Neural Networks
时间 2020-12-30
标签
图神经网络
少样本学习
深度学习
繁體版
原文
原文链接
Paper : FEW-SHOT LEARNING WITH GRAPH NEURAL NETWORKS Code : official 摘要 作者使用GNN建模少样本学习任务中的消息传递过程,将每个样本看作是图中的节点,少样本学习转化为图中给出部分节点的标签以后进行训练的点分类任务。作者提出的GNN建模方法还可以扩展到半监督学习或主动学习的任务上。 问题设定 首先给出少样本学习,主动学习和半监督
>>阅读原文<<
相关文章
1.
Few-Shot Learning with Graph Neural Networks
2.
FEW-SHOT LEARNING WITH GRAPH NEURAL NETWORKS翻译
3.
GRAPH2SEQ: GRAPH TO SEQUENCE LEARNING WITH ATTENTION-BASED NEURAL NETWORKS
4.
Few-Shot Learning with Graph Neural Networks笔记
5.
笔记《Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels》-NeurIPS 2019
6.
Overlapping Community Detection with Graph Neural Networks
7.
Structural Image Classification with Graph Neural Networks
8.
IMAGE DENOISING WITH GRAPH-CONVOLUTIONAL NEURAL NETWORKS
9.
FEW-SHOT LEARNING WITH GRAPH NEURAL NETWORK
10.
Graph-based Dependency Parsing with Graph Neural Networks
更多相关文章...
•
XSLT
元素
-
XSLT 教程
•
XQuery 添加元素 和属性
-
XQuery 教程
•
Java Agent入门实战(一)-Instrumentation介绍与使用
•
Java Agent入门实战(三)-JVM Attach原理与使用
相关标签/搜索
networks
graph
neural
learning
with+this
with...connect
Deep Learning
Meta-learning
with...as
by...with
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
安装cuda+cuDNN
2.
GitHub的使用说明
3.
phpDocumentor使用教程【安装PHPDocumentor】
4.
yarn run build报错Component is not found in path “npm/taro-ui/dist/weapp/components/rate/index“
5.
精讲Haproxy搭建Web集群
6.
安全测试基础之MySQL
7.
C/C++编程笔记:C语言中的复杂声明分析,用实例带你完全读懂
8.
Python3教程(1)----搭建Python环境
9.
李宏毅机器学习课程笔记2:Classification、Logistic Regression、Brief Introduction of Deep Learning
10.
阿里云ECS配置速记
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Few-Shot Learning with Graph Neural Networks
2.
FEW-SHOT LEARNING WITH GRAPH NEURAL NETWORKS翻译
3.
GRAPH2SEQ: GRAPH TO SEQUENCE LEARNING WITH ATTENTION-BASED NEURAL NETWORKS
4.
Few-Shot Learning with Graph Neural Networks笔记
5.
笔记《Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels》-NeurIPS 2019
6.
Overlapping Community Detection with Graph Neural Networks
7.
Structural Image Classification with Graph Neural Networks
8.
IMAGE DENOISING WITH GRAPH-CONVOLUTIONAL NEURAL NETWORKS
9.
FEW-SHOT LEARNING WITH GRAPH NEURAL NETWORK
10.
Graph-based Dependency Parsing with Graph Neural Networks
>>更多相关文章<<