JavaShuo
栏目
标签
论文笔记:基于外部知识的会话模型Learning to Select Knowledge for Response Generation in Dialog Systems
时间 2020-12-24
原文
原文链接
Learning to Select Knowledge for Response Generation in Dialog Systems 1 出发点 传统的Seq2Seq模型趋向产生一般的且信息含量较少的回答。 现有的具有外部知识的模型中,很少有人证明他们的模型有能力将适当的知识纳入生成的回答中。 2 论文贡献 在训练阶段,利用后验知识来实现有效的知识选择和整合,并且指导先验知识分布的训练。在
>>阅读原文<<
相关文章
1.
知识驱动对话-Learning to Select Knowledge for Response Generation in Dialog Systems-阅读笔记
2.
论文笔记:基于外部知识的会话模型Commonsense Knowledge Aware Conversation Generation with Graph Attention
3.
论文笔记《Are You Talking to Me? Reasoned Visual Dialog Generation through Adversarial Learning》
4.
Wide & Deep Learning for Recommender Systems论文笔记
5.
论文笔记 - Wide & Deep Learning for Recommender Systems
6.
论文笔记:Wide & Deep Learning for Recommender Systems
7.
《Mem2Seq:Effectively Incorporating Knowledge Bases into End-to-End Task-Oriented Dialog Systems》阅读笔记
8.
论文笔记:ACL 2019 Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs
9.
论文笔记+模型实现TransNets: Learning to Transform for Recommendation
10.
论文阅读笔记:Recent Advances and Challenges in Task-oriented Dialog Systems
更多相关文章...
•
Swift for-in 循环
-
Swift 教程
•
与传输层有关的基本知识
-
TCP/IP教程
•
Tomcat学习笔记(史上最全tomcat学习笔记)
•
☆基于Java Instrument的Agent实现
相关标签/搜索
知识笔记
论文笔记
for...in
for..in
for.....in
generation
systems
knowledge
模型论
response
MySQL教程
NoSQL教程
Spring教程
文件系统
设计模式
委托模式
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
部署Hadoop(3.3.0)伪分布式集群
2.
从0开始搭建hadoop伪分布式集群(三:Zookeeper)
3.
centos7 vmware 搭建集群
4.
jsp的page指令
5.
Sql Server 2008R2 安装教程
6.
python:模块导入import问题总结
7.
Java控制修饰符,子类与父类,组合重载覆盖等问题
8.
(实测)Discuz修改论坛最后发表的帖子的链接为静态地址
9.
java参数传递时,究竟传递的是什么
10.
Linux---文件查看(4)
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
知识驱动对话-Learning to Select Knowledge for Response Generation in Dialog Systems-阅读笔记
2.
论文笔记:基于外部知识的会话模型Commonsense Knowledge Aware Conversation Generation with Graph Attention
3.
论文笔记《Are You Talking to Me? Reasoned Visual Dialog Generation through Adversarial Learning》
4.
Wide & Deep Learning for Recommender Systems论文笔记
5.
论文笔记 - Wide & Deep Learning for Recommender Systems
6.
论文笔记:Wide & Deep Learning for Recommender Systems
7.
《Mem2Seq:Effectively Incorporating Knowledge Bases into End-to-End Task-Oriented Dialog Systems》阅读笔记
8.
论文笔记:ACL 2019 Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs
9.
论文笔记+模型实现TransNets: Learning to Transform for Recommendation
10.
论文阅读笔记:Recent Advances and Challenges in Task-oriented Dialog Systems
>>更多相关文章<<