最大堆、最小堆操做-删除、

 堆的定义是:n个元素的序列{k1,k2,…,kn},当且仅当知足以下关系时被成为堆 html

    (1)Ki <= k2i 且 ki <= k2i-1         数组

  或 (2) Ki >= k2i 且 ki >= k2i-1  spa

          (i = 1,2,…[n/2]) htm

当知足(1)时,为最小堆,当知足(2)时,为最大堆。 blog

 

  若将此序列对应的一维数组堪称是一个彻底二叉树,则2i和2i+1个节点分别是节点i的左右子节点。 get

以下为一个最大堆: 二叉树

 

下面以最小堆为例说明堆的输出im

 

  图1为一个最小堆,当最小节点根节点13输出后,将最后一个节点97做为根节点,移到顶端,如图2. 而后要对堆进行调整。比较此彻底树的根节点与其两个子节点大小,由于27 < 38 < 97,因此27是三个节点里最小的,将节点27与根节点97交换。此时以97替代27而产生的右子树为一个新的堆,再以97为根节点,对此最小堆进行调整,同理,知道要将97与49交换,获得图3的彻底树。此时以97代替49为根节点的右子树为一个新堆,再对此堆作一样的操做,由于此彻底树已是最小堆,因此能够中止操做,堆的调整完毕。此时再将根节点,对的最小值输出,并进行一样的调整,能够获得如图4的新堆。这个过程被称为“筛选”。 img

 

一样以最小堆说明堆的初始化di

  从一个无序序列初始化为一个堆的过程就是一个反复“筛选”的过程。由彻底二叉树的性质能够知,一个有n个节点的彻底二叉树的最后一个非叶节点是节点[n/2],堆的初始化过程就从这个[n/2]节点开始。上图为以下无序数组的初始化:

    {49,38,65,97,76,13,27,50}

  首先,未处理的数组对应的堆为图1模样。从第四个节点开始([8/2]=4),由于50 < 97,故要交换两节点,交换后还要继续对其新的左子树进行相似输出后那样的筛选。易见其左子树只有节点97,已经为最佳状况,故能够继续堆的初始化,如图2。再考虑第三个节点,由于13 < 27 < 65,即节点13为当前的最小节点,故与节点65交换,并对新的左子树进行筛选,其也为最佳状况,故可继续堆的初始化,结果如图3。而后考虑第二个节点,由于38 < 50 < 76,故已经为最优状况,不用调整。最后再考虑第一个节点,根节点。由于 13 < 38 < 49,故须要将根节点49与其右孩子节点13交换,交换后还要继续对其新的右子树进行相似输出后那样的筛选,可见右子树还须要调整,由于 27 < 49 < 65,故将节点49与节点27交换。此时已经处理完了根节点,初始化结束。最终结果如图5.

相关文章
相关标签/搜索