本身虽然没有好好看过数论的知识,,可是实际的作题中有一些处理老是须要数论的板子,,老是再作题的时候翻别人的博客抄很耽误事,,并且对本身也很差,,因此总结一下日常用道的数论的板子,,git
//判断一个数是否为质数 bool prime[maxn]; void init() { for(int i = 2; i < maxn; ++i)prime[i] = true; for(int i = 2; i * i < maxn; ++i) if(prime[i]) for(int j = i * i; j < maxn; j += i) prime[j] = false; }
bool prime[maxn]; int p[maxn], tot; void init() { for(int i = 2; i < maxn; ++i)prime[i] = true; for(int i = 2; i < maxn; ++i) { if(prime[i])p[tot++] = i; for(int j = 0; j < tot && i * p[j] < maxn; ++i) { prime[i * p[j]] = false; if(i % p[j] == 0)break; } } }
//find all prime from 1 to maxn bool isprime[maxn]; int prime[maxn], tot = -1; int inv_prime[maxn]; void init() //寻找maxn之内的质数及其质数的逆元 { for(int i = 2; i <= maxn; ++i)isprime[i] = false; for(int i = 2; i <= maxn; ++i) { if(!isprime[i])prime[++tot] = i, inv_prime[tot] = pow_(i, mod - 2, mod); for(int j = 0; j <= tot && i * prime[j] <= maxn; ++j) { isprime[i * prime[j]] = true; if(i % prime[j] == 0)break; } } }
vector<int> prime_factor[maxn]; void init() { for(int i = 2; i < maxn; ++i) if(prime_factor[i].size() == 0) for(int j = i; j < maxn; j += i) prime_factor[j].push_back(i); }
vector<int> factor[maxn]; void init() { for(int i = 2; i <= maxn; ++i) for(int j = i; j <= maxn; j += i) factor[j].push_back(i); }
//18 2 3 3 vector<int> prime_factor[maxn]; void init() { int tmp; for(int i = 2; i <= maxn; ++i) { if(prime_factor[i].size() == 0) { for(int j = i; j <= maxn; j += i) { tmp = j; while(tmp == tmp / i * i)//直接取模貌似很费时 { prime_factor[j].push_back(i); tmp /= i; } } } } }
inline ll pow_(ll a, ll b, ll p) //快速幂 { ll ret = 1; while(b) { if(b & 1) ret = (ret * a) % p; a = (a * a) % p; b >>= 1; } return ret; }
inline ll pow_(ll a, ll b, ll p) //快速幂 { ll ret = 1; while(b) { if(b & 1) ret = (ret * a) % p; a = (a * a) % p; b >>= 1; } return ret; } //inv(a)=a^(mod-2)(mod) 费马小定理 ll inv(ll a, ll p) { return pow_(a, p - 2, p); }
void ex_gcd(ll a, ll b, ll &x, ll &y, ll &d) { if(!b){d = a, x = 1, y = 0;} else { ex_gcd(b, a % b, y, x, d); y -= x * (a / b); } } ll inv(ll a, ll p) { ll d, x, y; ex_gcd(a, p, x, y, d); return d == 1 ? (x % p + p) % p : -1; }
ll inv(ll a, ll p)//求t关于p的逆元,注意:t要小于p,最好传参前先把t%p一下 { return a == 1 ? 1 : (p - p / a) * inv(p % a, p) % p; }
inline int read() //快读 { int ans=0; char ch=getchar(); while(!isdigit(ch)) ch=getchar(); while(isdigit(ch)) ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar(); return ans; }