LeetCode 集锦(二十五) - 第 108 题 Convert Sorted Array To Binary Search Tree

问题

Given an array where elements are sorted in ascending order, convert it to a height balanced BST.

 For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

 Example:


Given the sorted array: [-10,-3,0,5,9],

One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:

      0
     / \
   -3   9
   /   /
 -10  5


复制代码

翻译:

给定一个按升序排列元素的数组,将其转换为高度平衡的BST。 对于该问题,高度平衡二叉树定义为每一个节点的两个子树深度相差不超过1的二叉树。 例子: 给定排序后的数组:[-10,-3,0,5,9], 一个可能的答案是:[0,-3,9,-10,null,5],表示高度平衡BST:node

0
    / \
  -3   9
  /   /
-10  5
复制代码

解题思路

本题是相对而言比较复杂,须要一个高度平衡的二叉树,可是这边参数很特定,是一个排序的数组,排序的数组,变成高度平衡的二叉树,那不是只要对半折开就行了嘛,那不就是一颗树了嘛?git

解题方法

  1. 按照分治法github

    public TreeNode sortedArrayToBST(int[] nums) {
         if (nums.length <= 0) {
             return null;
         }
         return sortedArrayToBST(nums, 0, nums.length - 1);
    
    
     }
    
    
     private TreeNode sortedArrayToBST(int[] nums, int left, int right) {
         if (left > right) {
             return null;
         }
         if (left == right) {
             return new TreeNode(nums[left]);
         }
         int mid = (left + right+1) / 2;
         TreeNode leftNode = sortedArrayToBST(nums, left, mid - 1);
         TreeNode rightNode = sortedArrayToBST(nums, mid + 1, right);
         TreeNode treeNode = new TreeNode(nums[mid]);
         treeNode.left = leftNode;
         treeNode.right = rightNode;
         return treeNode;
    
     }
    复制代码

    时间复杂度: 该方案用了二分法的方式,因此为O(n)=O(nlogn)数组

    空间复杂度: 该方案没有使用额外的空间,因此空间复杂度O(n)=O(1)bash

总结

本题的大体解法如上所诉,根据二分法的方式,来解决对半拆分的状况。其实这边应该是有规律的,好比应该是和中间节点是有倍数关系的,可是具体我也没有去验证。ui

欢迎关注个人博客-FightCrapthis

相关文章
相关标签/搜索