su guxiaotu # 切换到用户guxiaotu # 切换到当前用户主目录下 cd $HOME sudo yum install -y git # 安装git git clone https://github.com/weiliu89/caffe.git caffe-ssd #下载代码而且重命名为caff-ssd # 进入caffe-ssd源代码目录 cd caffe-ssd # checkout出ssd算法源码 git checkout ssd
# 设置环境变量 echo 'export CAFFE_ROOT=$HOME/caffe-ssd' >> ~/.bashrc # 配置$CAFFE_ROOT # 将/usr/lib/python2.7/dist-packages和$CAFFE_ROOT/python追加到$PYTHONPATH. echo 'export PYTHONPATH=$PYTHONPATH:/usr/lib/python2.7/dist-packages:$CAFFE_ROOT/python'>>~/.bashrc # 将$CAFFE_ROOT/build/tool命令工具追加到$PATH中 echo 'export PATH=$PATH:$CAFFE_ROOT/build/tool' >> ~/.bashrc # 使环境变量生效 source ~/.bashrc
sudo yum install -y epel-release \ wget \ zip \ gcc-c++ \ cmake \ protobuf-devel \ leveldb-devel \ snappy-devel \ boost-devel \ hdf5-devel \ gflags-devel \ glog-devel \ lmdb-devel \ openblas-devel \ python-devel \ liblas-devel \ atlas-devel \ libopenblas-dev \ python-matplotlib \ numpy # 清除缓存包 sudo yum clean all sudo rm -rf /var/cache/yum
centos中opencv-devel默认为2.4.5,会提示"warning: GStreamer: unable to query position of stream (/builddir/build/BUILD/opencv-2.4.5/modules/highgui/src/cap_gstreamer.cpp:660)",国外论坛2013年讨论过,源代码有问题。因此选择手动安装opencvpython
sudo wget -O /opt/opencv2.4.13.6.zip https://github.com/opencv/opencv/archive/2.4.13.6.zip sudo unzip /opt/opencv2.4.13.6.zip -d /opt cd /opt/opencv-2.4.13.6/ && sudo mkdir release/ && cd release sudo cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local .. sudo make && sudo make install
# glog sudo wget https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/google-glog/glog-0.3.3.tar.gz -P /opt tar zxvf /opt/glog-0.3.3.tar.gz -C /opt cd /opt/glog-0.3.3 sudo ./configure sudo make && sudo make install # gflags sudo wget https://codeload.github.com/gflags/gflags/zip/v2.0 -O /opt/gflags-2.0.zip sudo unzip /opt/gflags-2.0.zip -d /opt cd /opt/gflags-2.0 sudo ./configure sudo make && sudo make install # lmdb git clone https://github.com/LMDB/lmdb /opt/lmdb cd /opt/lmdb/libraries/liblmdb sudo make && sudo make instal
提醒:linux
每次从新make编译源代码前,须要进入以前源代码包make clean清除下编译c++
Ø 出现问题:若是gflags高于2.0版本会出现如下问题 /usr/bin/ld: /usr/local/lib/libgflags.a(gflags.cc.o): relocation R_X86_64_32S against `.rodata' can not be used when making a shared object; recompile with -fPIC /usr/local/lib/: could not read symbols: Bad value collect2: ld returned 1 exit status make: [libglog.la] Error 1git
Ø 分析缘由: Glog Need to be compiled into shared library.github
sudo yum install -y python-pip sudo pip install --upgrade pip # 升级pip到10.0.1版本 # 临时设置阿里云的pip源加快Python库的下载速度 sudo pip install -i https://mirrors.aliyun.com/pypi/simple ansible # 安装Python第三方库 pip install Cython \ numpy \ scipy \ scikit-image \ matplotlib==1.5.3 \ ipython \ h5py \ leveldb \ networkx \ nose \ pandas \ python-dateutil \ protobuf \ python-gflags \ pyyaml \ Pillow \ mkl \ pyldap \ six --user # 也能够按照$CAFFE_ROOT/python/requirements.txt中指定具体版本安装 pip install Cython==0.19.2 \ numpy==1.7.1 \ scipy==0.13.2 \ scikit-image==0.9.3 \ matplotlib==1.3.1 \ ipython==3.0.0 \ h5py==2.2.0 \ leveldb==0.191 \ networkx==1.8.1 \ nose==1.3.0 \ pandas==0.12.0 \ python-dateutil==2.6.0 \ protobuf==2.5.0 \ python-gflags==2.0 \ pyyaml==3.10 \ Pillow==2.3.0 \ six==1.1.0 --user
注意 matplotlib==1.5.3,1.5.3是当前1.0版本中最高版本,超过版本2.0.0以后,会提示“ImportError: cannot import name cbook”web
# 设置行号 echo 'set number' >> /etc/vimrc # 进入caffe-ssd目录 cd $CAFFE_ROOT cp Makefile.config.example Makefile.config sudo vim Makefile.config # 修改如下内容 8 CPU_ONLY := 1 # 第8行,将前面#取消,启用只使用CPU模式 89 WITH_PYTHON_LAYER := 1 # 第89行,取消注释表示使用Python编写layer # 第91~92行后面追加配置hdf5路径 91 INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial 92 LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib/usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial # 编译caffe make all # 编译pycaffe,前提确保$CAFFE_ROOT/python添加到环境变量PYTHONPATH中(详细请看2. 设置环境变量) make pycaffe make test # 可选 make runtest -j8
Ø 出现问题: ./include/caffe/util/cudnn.hpp:8:34:致命错误:caffe/proto/caffe.pb.h:没有那个文件或目录算法
Ø 分析缘由: 应该是版本比较低。 pip install protobuf --upgrade -i http://pypi.douban.com/simple --trusted-host pypi.douban.com --user pip install pillow --upgrade -i http://pypi.douban.com/simple --trusted-host pypi.douban.com --uservim
$CAFFE_ROOT/models/VGGNet/
# 若是使用做者已经训练好的模型数据,请下载到$CAFFE_ROOT/model sudo wget -P $CAFFE_ROOT/model http://www.cs.unc.edu/%7Ewliu/projects/SSD/models_VGGNet_VOC0712_SSD_300x300.tar.gz # 解压到制定目录 tar -zxvf $CAFFE_ROOT/model/models_VGGNet_VOC0712_SSD_300x300.tar.gz -C $CAFFE_ROOT/model
$HOME/data/
中# 用户主目录下建立data目录后进入 mkdir $HOME/data # 下载数据集 sudo wget -P $HOME/data http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar sudo wget -P $HOME/data http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar sudo wget -P $HOME/data http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar # 解压到指定目录(必须按照如下顺序解压,不能颠倒) tar -xvf $HOME/data/VOCtrainval_11-May-2012.tar -C $HOME/data tar -xvf $HOME/data/VOCtrainval_06-Nov-2007.tar -C $HOME/data tar -xvf $HOME/data/VOCtest_06-Nov-2007.tar -C $HOME/data
注意:三个压缩文件解压顺序必定不能打乱centos
cd $CAFFE_ROOT # 必须保证在$CAFFE_ROOT中执行 sudo vim /etc/ld.so.conf.d/usr-libs.conf # 添加如下内容 /usr/local/lib # 在data/VOC0712/中建立trainval.txt, test.txt, and test_name_size.txt ./data/VOC0712/create_list.sh # You can modify the parameters in create_data.sh if needed. # It will create lmdb files for trainval and test with encoded original image: # - $HOME/data/VOCdevkit/VOC0712/lmdb/VOC0712_trainval_lmdb # - $HOME/data/VOCdevkit/VOC0712/lmdb/VOC0712_test_lmdb # and make soft links at examples/VOC0712/ sudo vim data/VOC0712/create_data.sh # 修改一下如下值 root_dir=$CAFFE_ROOT # 执行sh脚本生成lmdb文件 ./data/VOC0712/create_data.sh
注意:若是提示缺乏某个model,说明缺乏对应Python第三方库或者版本太低,使用sudo pip install --upgrade 具体包名安装,也能够制定具体版本安装 提示缺乏sci没法使用pip install -U命令安装scikit-image,提示“Cannot uninstall 'pyparsing'. It is a distutils installed project and thus we cannot accurately determine which files belong to it which would lead to only a partial uninstall.”api
# 因为其余库以来pyparsing,因此选择忽略它 pip install scikit-image --ignore-installed pyparsing --userØ 出现问题: error while loading shared libraries: libgflags.so.2: cannot open shared object file: No such file or directory Ø 分析缘由: 缘由是程序没有找到相应的依赖库,解决方法:
- 将全部的用户须要用到的库放到/usr/loca/lib;
- 在/etc/ld.so.conf.d/目录下新建文件usr-libs.conf,内容是:/usr/local/lib
- sudo ldconfig
# It will create model definition files and save snapshot models in: # - $CAFFE_ROOT/models/VGGNet/VOC0712/SSD_300x300/ # and job file, log file, and the python script in: # - $CAFFE_ROOT/jobs/VGGNet/VOC0712/SSD_300x300/ # and save temporary evaluation results in: # - $HOME/data/VOCdevkit/results/VOC2007/SSD_300x300/ # It should reach 77.* mAP at 120k iterations. python examples/ssd/ssd_pascal.py
# If you would like to test a model you trained, you can do: python examples/ssd/score_ssd_pascal.py
$CAFFE_ROOT/examples/videos
cd $CAFFE_ROOT # 测试示例视频 sudo vim $CAFFE_ROOT/examples/ssd/ssd_pascal_video.py # 第99~100行修改模式为CPU,P.Solver.GPU修改成P.Solver.CPU 99 # Use GPU or CPU 100 solver_mode = P.Solver.CPU # 第77~76行修改视频文件路径$CAFFE_ROOT/examples/videos 75 # The video file path 76 video_file = "examples/videos/ILSVRC2015_train_00755001.mp4"
# 摄像头测试 sudo vim $CAFFE_ROOT/examples/ssd/ssd_pascal_webcam.py # 第100~101行修改模式为CPU,P.Solver.GPU修改成P.Solver.CPU 99 # Use GPU or CPU 102 solver_mode = P.Solver.CPU # If you would like to attach a webcam to a model you trained, you can do: python examples/ssd/ssd_pascal_webcam.py