人脸识别---基于深度学习和稀疏表达的人脸识别算法

1 介绍

本文将介绍一种基于深度学习和稀疏表达的人脸识别算法。算法

首先。利用深度学习框架(VGGFace)提取人脸特征;其次,利用PCA对提取的特征进行降维;最后,利用稀疏表达分类实现特征匹配。我採用CMC曲线评价在AR数据库上的识别性能。最后我还提供了整个过程的code。数据库


2 基于深度学习和稀疏表达的人脸识别算法

2.1 利用VGGFace提取人脸特征

如下介绍利用VGGFace对人脸特征进行提取。咱们利用的数据库为AR数据库。数据库的图比例如如下:
这里写图片描写叙述
接下来咱们利用VGGFace对人脸特征进行提取。ruby

2.2 PCA对人脸特征进行降维

利用pca对数据降维,VGGFace提取出的特征为4096维。对提取的特征进行降维最后降到128维。markdown

2.3 稀疏表达的人脸匹配

数据库一共同拥有 C 我的,每一个人有 k 张图片,那么每一个人的特征字典为 Dc={fc1,fc2,,fck} , 那么 C 我的就组成一个Gallery特征字典 D={D1,D2,,DC} 。给必定probe人脸x, 那么特征为 y=F(x) , 则稀疏表达可以有例如如下表达:
框架

||x||1,Dx=y

当中 x 为稀疏编码。


最后咱们可以利用稀疏表达分类器来识别这个probe人脸 x :
post

mincrc(y)=||yDcδc(x)||22

3 Code

function cnn_vgg_faces()
%CNN_VGG_FACES  Demonstrates how to use VGG-Face
clear all
clc
addpath PCA
run(fullfile(fileparts(mfilename('fullpath')),...
    '..', 'matlab', 'vl_setupnn.m')) ;
net = load('data/models/vgg-face.mat') ;
list = dir('../data/AR');
C = 100;
img_list = list(3:end);
index = [1, 10];
%% 创建基于VGGFace的Gallery字典 dictionary = []; for i = 1:C disp(i) numEachGalImg(i) = 0; for j = 1:2 im = imread(strcat('../data/AR/',img_list((i-1)*26+index(j)).name)); im_ = single(im) ; % note: 255 range
        im_ = imresize(im_, net.meta.normalization.imageSize(1:2)) ;
        for k = 1:3
            im1_(:,:,k) = im_;
        end
        im2_ = bsxfun(@minus,im1_,net.meta.normalization.averageImage) ;
        res = vl_simplenn(net, im2_) ;
        feature_p(:,j) = res(36).x(:);
    end
    numEachGalImg(i) = numEachGalImg(i) + size(feature_p,2);
    dictionary = [dictionary feature_p];
end
%% PCA对特征进行降维 FaceContainer = double(dictionary'); [pcaFaces W meanVec] = fastPCA(FaceContainer,128); X = pcaFaces; [X,A0,B0] = scaling(X); LFWparameter.mean = meanVec; LFWparameter.A = A0; LFWparameter.B = B0; LFWparameter.V = W; imfo = LFWparameter; train_fea = (double(FaceContainer)-repmat(imfo.mean, size(FaceContainer,1), 1))*imfo.V; dictionary = scaling(train_fea,1,imfo.A,imfo.B); for i = 1:size(dictionary, 1) dictionary(i,:) = dictionary(i,:)/norm(dictionary(i,:)); end dictionary = double(dictionary); totalGalKeys = sum(numEachGalImg); cumNumEachGalImg = [0; cumsum(numEachGalImg')]; %% 利用稀疏编码进行特征匹配
% sparse coding parameters
if ~exist('opt_choice', 'var')
    opt_choice = 1;
end
num_bases = 128;
beta = 0.4;
batch_size = size(dictionary, 1);
num_iters = 5;
if opt_choice==1
    sparsity_func= 'L1';
    epsilon = [];
elseif opt_choice==2
    sparsity_func= 'epsL1';
    epsilon = 0.01;
end

Binit = [];

fname_save = sprintf('../results/sc_%s_b%d_beta%g_%s', sparsity_func, num_bases, beta, datestr(now, 30));

AtA = dictionary*dictionary'; for i = 1:C fprintf('%s  \n',num2str(i)); tic im = imread(strcat('../data/AR/',img_list((i-1)*26+26).name)); im_ = single(im) ; % note: 255 range im_ = imresize(im_, net.meta.normalization.imageSize(1:2)) ; for k = 1:3 im1_(:,:,k) = im_; end im2_ = bsxfun(@minus,im1_,net.meta.normalization.averageImage) ; res = vl_simplenn(net, im2_) ; feature_p = res(36).x(:); feature_p = (double(feature_p)'-imfo.mean)*imfo.V;
    feature_p = scaling(feature_p,1,imfo.A,imfo.B);
    feature_p = feature_p/norm(feature_p, 2);
    [B S stat] = sparse_coding(AtA,0, dictionary', double(feature_p'), num_bases, beta, sparsity_func, epsilon, num_iters, batch_size, fname_save, Binit);
    for m = 1:length(numEachGalImg)
        AA = S(cumNumEachGalImg(m)+1:cumNumEachGalImg(m+1),:);
        X1 = dictionary(cumNumEachGalImg(m)+1:cumNumEachGalImg(m+1),:);
        recovery = X1'*AA; YY(m) = mean(sum((recovery'-double(feature_p)).^2));
    end
    score(:,i) = YY;
    toc
end
accuracy = calrank(score1,1:1,'ascend');
fprintf('rank-1:%d/%%\n',accuracy*100);

文中以
calrank可以计算获得CMC曲线:參见http://blog.csdn.net/hlx371240/article/details/53482752
最后获得rank-1为82%。
整个代码见资源,由于vgg-face 太大,可以本身到vgg的官网下载,而后放到../matconvnet-1.0-beta19\examples\data\models中。性能

相关文章
相关标签/搜索