LeakCanary 是由 Square 开源的针对 Android
和 Java
的内存泄漏检测工具。java
LeakCanary
的集成过程很简单,首先在 build.gradle
文件中添加依赖:android
dependencies { debugImplementation 'com.squareup.leakcanary:leakcanary-android:1.5.4' releaseImplementation 'com.squareup.leakcanary:leakcanary-android-no-op:1.5.4' }
debug
和 release
版本中使用的是不一样的库。LeakCanary
运行时会常常执行 GC
操做,在 release
版本中会影响效率。android-no-op
版本中基本没有逻辑实现,用于 release
版本。git
而后实现本身的 Application
类:github
public class ExampleApplication extends Application { @Override public void onCreate() { super.onCreate(); if (LeakCanary.isInAnalyzerProcess(this)) { // This process is dedicated to LeakCanary for heap analysis. // You should not init your app in this process. return; } LeakCanary.install(this); // Normal app init code... } }
这样就集成完成了。当 LeakCanary
检测到内存泄露时,会自动弹出 Notification
通知开发者发生内存泄漏的 Activity
和引用链,以便进行修复。服务器
从入口函数 LeakCanary.install(this)
开始分析:并发
LeakCanary.java
app
/** * Creates a {@link RefWatcher} that works out of the box, and starts watching activity * references (on ICS+). */ public static RefWatcher install(Application application) { return refWatcher(application).listenerServiceClass(DisplayLeakService.class) .excludedRefs(AndroidExcludedRefs.createAppDefaults().build()) .buildAndInstall(); }
LeakCanary.java
dom
/** Builder to create a customized {@link RefWatcher} with appropriate Android defaults. */ public static AndroidRefWatcherBuilder refWatcher(Context context) { return new AndroidRefWatcherBuilder(context); }
refWatcher()
方法新建了一个 AndroidRefWatcherBuilder
对象,该对象继承于 RefWatcherBuilder
类,配置了一些默认参数,利用建造者构建一个 RefWatcher
对象。ide
AndroidRefWatcherBuilder.java
函数
public AndroidRefWatcherBuilder listenerServiceClass( Class<? extends AbstractAnalysisResultService> listenerServiceClass) { return heapDumpListener(new ServiceHeapDumpListener(context, listenerServiceClass)); }
RefWatcherBuilder.java
/** @see HeapDump.Listener */ public final T heapDumpListener(HeapDump.Listener heapDumpListener) { this.heapDumpListener = heapDumpListener; return self(); }
DisplayLeakService.java
/** * Logs leak analysis results, and then shows a notification which will start {@link * DisplayLeakActivity}. * * You can extend this class and override {@link #afterDefaultHandling(HeapDump, AnalysisResult, * String)} to add custom behavior, e.g. uploading the heap dump. */ public class DisplayLeakService extends AbstractAnalysisResultService {}
listenerServiceClass()
方法绑定了一个后台服务 DisplayLeakService
,这个服务主要用来分析内存泄漏结果并发送通知。你能够继承并重写这个类来进行一些自定义操做,好比上传分析结果等。
RefWatcherBuilder.java
public final T excludedRefs(ExcludedRefs excludedRefs) { this.excludedRefs = excludedRefs; return self(); }
AndroidExcludedRefs.java
/** * This returns the references in the leak path that can be ignored for app developers. This * doesn't mean there is no memory leak, to the contrary. However, some leaks are caused by bugs * in AOSP or manufacturer forks of AOSP. In such cases, there is very little we can do as app * developers except by resorting to serious hacks, so we remove the noise caused by those leaks. */ public static ExcludedRefs.Builder createAppDefaults() { return createBuilder(EnumSet.allOf(AndroidExcludedRefs.class)); } public static ExcludedRefs.Builder createBuilder(EnumSet<AndroidExcludedRefs> refs) { ExcludedRefs.Builder excluded = ExcludedRefs.builder(); for (AndroidExcludedRefs ref : refs) { if (ref.applies) { ref.add(excluded); ((ExcludedRefs.BuilderWithParams) excluded).named(ref.name()); } } return excluded; }
excludedRefs()
方法定义了一些对于开发者能够忽略的路径,意思就是即便这里发生了内存泄漏,LeakCanary
也不会弹出通知。这大可能是系统 Bug 致使的,无需用户进行处理。
最后调用 buildAndInstall()
方法构建 RefWatcher
实例并开始监听 Activity
的引用:
AndroidRefWatcherBuilder.java
/** * Creates a {@link RefWatcher} instance and starts watching activity references (on ICS+). */ public RefWatcher buildAndInstall() { RefWatcher refWatcher = build(); if (refWatcher != DISABLED) { LeakCanary.enableDisplayLeakActivity(context); ActivityRefWatcher.install((Application) context, refWatcher); } return refWatcher; }
看一下主要的 build()
和 install()
方法:
RefWatcherBuilder.java
/** Creates a {@link RefWatcher}. */ public final RefWatcher build() { if (isDisabled()) { return RefWatcher.DISABLED; } ExcludedRefs excludedRefs = this.excludedRefs; if (excludedRefs == null) { excludedRefs = defaultExcludedRefs(); } HeapDump.Listener heapDumpListener = this.heapDumpListener; if (heapDumpListener == null) { heapDumpListener = defaultHeapDumpListener(); } DebuggerControl debuggerControl = this.debuggerControl; if (debuggerControl == null) { debuggerControl = defaultDebuggerControl(); } HeapDumper heapDumper = this.heapDumper; if (heapDumper == null) { heapDumper = defaultHeapDumper(); } WatchExecutor watchExecutor = this.watchExecutor; if (watchExecutor == null) { watchExecutor = defaultWatchExecutor(); } GcTrigger gcTrigger = this.gcTrigger; if (gcTrigger == null) { gcTrigger = defaultGcTrigger(); } return new RefWatcher(watchExecutor, debuggerControl, gcTrigger, heapDumper, heapDumpListener, excludedRefs); }
build()
方法利用建造者模式构建 RefWatcher
实例,看一下其中的主要参数:
watchExecutor
: 线程控制器,在 onDestroy()
以后而且主线程空闲时执行内存泄漏检测debuggerControl
: 判断是否处于调试模式,调试模式中不会进行内存泄漏检测gcTrigger
: 用于 GC
,watchExecutor
首次检测到可能的内存泄漏,会主动进行 GC
,GC
以后会再检测一次,仍然泄漏的断定为内存泄漏,进行后续操做heapDumper
: dump
内存泄漏处的 heap
信息,写入 hprof
文件heapDumpListener
: 解析完 hprof
文件并通知 DisplayLeakService
弹出提醒excludedRefs
: 排除能够忽略的泄漏路径接下来就是最核心的 install()
方法,这里就开始观察 Activity
的引用了。在这以前还执行了一步操做,LeakCanary.enableDisplayLeakActivity(context);
:
public static void enableDisplayLeakActivity(Context context) { setEnabled(context, DisplayLeakActivity.class, true); }
最后执行到 LeakCanaryInternals#setEnabledBlocking
:
public static void setEnabledBlocking(Context appContext, Class<?> componentClass, boolean enabled) { ComponentName component = new ComponentName(appContext, componentClass); PackageManager packageManager = appContext.getPackageManager(); int newState = enabled ? COMPONENT_ENABLED_STATE_ENABLED : COMPONENT_ENABLED_STATE_DISABLED; // Blocks on IPC. packageManager.setComponentEnabledSetting(component, newState, DONT_KILL_APP); }
这里启用了 DisplayLeakActivity
而且显示应用图标。注意,这是指的不是你本身的应用图标,是一个单独的 LeakCanary
的应用,用于展现内存泄露历史的,入口函数是 DisplayLeakActivity
,在 AndroidManifest.xml 中能够看到默认状况下 android:enabled="false"
:
<activity android:theme="@style/leak_canary_LeakCanary.Base" android:name=".internal.DisplayLeakActivity" android:process=":leakcanary" android:enabled="false" android:label="@string/leak_canary_display_activity_label" android:icon="@mipmap/leak_canary_icon" android:taskAffinity="com.squareup.leakcanary.${applicationId}" > <intent-filter> <action android:name="android.intent.action.MAIN"/> <category android:name="android.intent.category.LAUNCHER"/> </intent-filter> </activity>
ActivityRefWatcher.java
public static void install(Application application, RefWatcher refWatcher) { new ActivityRefWatcher(application, refWatcher).watchActivities(); } public void watchActivities() { // Make sure you don't get installed twice. stopWatchingActivities(); application.registerActivityLifecycleCallbacks(lifecycleCallbacks); }
watchActivities()
方法中先解绑生命周期回调注册 lifecycleCallbacks
,再从新绑定,避免重复绑定。lifecycleCallbacks
监听了 Activity
的各个生命周期,在 onDestroy()
中开始检测当前 Activity
的引用。
private final Application.ActivityLifecycleCallbacks lifecycleCallbacks = new Application.ActivityLifecycleCallbacks() { @Override public void onActivityCreated(Activity activity, Bundle savedInstanceState) { } @Override public void onActivityStarted(Activity activity) { } @Override public void onActivityResumed(Activity activity) { } @Override public void onActivityPaused(Activity activity) { } @Override public void onActivityStopped(Activity activity) { } @Override public void onActivitySaveInstanceState(Activity activity, Bundle outState) { } @Override public void onActivityDestroyed(Activity activity) { ActivityRefWatcher.this.onActivityDestroyed(activity); } }; void onActivityDestroyed(Activity activity) { refWatcher.watch(activity); }
下面着重分析 RefWatcher
是如何检测 Activity
的。
调用 RefWatcher#watch
检测 Activity
。 RefWatcher.java
/** * Identical to {@link #watch(Object, String)} with an empty string reference name. * * @see #watch(Object, String) */ public void watch(Object watchedReference) { watch(watchedReference, ""); } /** * Watches the provided references and checks if it can be GCed. This method is non blocking, * the check is done on the {@link WatchExecutor} this {@link RefWatcher} has been constructed * with. * * @param referenceName An logical identifier for the watched object. */ public void watch(Object watchedReference, String referenceName) { if (this == DISABLED) { return; } checkNotNull(watchedReference, "watchedReference"); checkNotNull(referenceName, "referenceName"); final long watchStartNanoTime = System.nanoTime(); String key = UUID.randomUUID().toString(); retainedKeys.add(key); final KeyedWeakReference reference = new KeyedWeakReference(watchedReference, key, referenceName, queue); ensureGoneAsync(watchStartNanoTime, reference); }
watch()
方法的参数是 Object
,LeakCanary
并不只仅是针对 Android
的,它能够检测任何对象的内存泄漏,原理都是一致的。
这里出现了几个新面孔,先来了解一下各自是什么:
retainedKeys
: 一个 Set<String>
集合,每一个检测的对象都对应着一个惟一的 key
,存储在 retainedKeys
中KeyedWeakReference
: 自定义的弱引用,持有检测对象和对用的 key
值final class KeyedWeakReference extends WeakReference<Object> { public final String key; public final String name; KeyedWeakReference(Object referent, String key, String name, ReferenceQueue<Object> referenceQueue) { super(checkNotNull(referent, "referent"), checkNotNull(referenceQueue, "referenceQueue")); this.key = checkNotNull(key, "key"); this.name = checkNotNull(name, "name"); } }
queue
: ReferenceQueue
对象,和 KeyedWeakReference
配合使用这里有个小知识点,弱引用和引用队列 ReferenceQueue
联合使用时,若是弱引用持有的对象被垃圾回收,Java 虚拟机就会把这个弱引用加入到与之关联的引用队列中。即 KeyedWeakReference
持有的 Activity
对象若是被垃圾回收,该对象就会加入到引用队列 queue
中。
接着看看具体的内存泄漏判断过程:
private void ensureGoneAsync(final long watchStartNanoTime, final KeyedWeakReference reference) { watchExecutor.execute(new Retryable() { @Override public Retryable.Result run() { return ensureGone(reference, watchStartNanoTime); } }); }
经过 watchExecutor
执行检测操做,这里的 watchExecutor
是 AndroidWatchExecutor
对象。
@Override protected WatchExecutor defaultWatchExecutor() { return new AndroidWatchExecutor(DEFAULT_WATCH_DELAY_MILLIS); }
DEFAULT_WATCH_DELAY_MILLIS
为 5 s。
public AndroidWatchExecutor(long initialDelayMillis) { mainHandler = new Handler(Looper.getMainLooper()); HandlerThread handlerThread = new HandlerThread(LEAK_CANARY_THREAD_NAME); handlerThread.start(); backgroundHandler = new Handler(handlerThread.getLooper()); this.initialDelayMillis = initialDelayMillis; maxBackoffFactor = Long.MAX_VALUE / initialDelayMillis; }
看看其中用到的几个对象:
mainHandler
: 主线程消息队列handlerThread
: 后台线程,HandlerThread
对象,线程名为 LeakCanary-Heap-Dump
backgroundHandler
: 上面的后台线程的消息队列initialDelayMillis
: 5 s,即以前的 DEFAULT_WATCH_DELAY_MILLIS
@Override public void execute(Retryable retryable) { if (Looper.getMainLooper().getThread() == Thread.currentThread()) { waitForIdle(retryable, 0); } else { postWaitForIdle(retryable, 0); } } void postWaitForIdle(final Retryable retryable, final int failedAttempts) { mainHandler.post(new Runnable() { @Override public void run() { waitForIdle(retryable, failedAttempts); } }); } void waitForIdle(final Retryable retryable, final int failedAttempts) { // This needs to be called from the main thread. Looper.myQueue().addIdleHandler(new MessageQueue.IdleHandler() { @Override public boolean queueIdle() { postToBackgroundWithDelay(retryable, failedAttempts); return false; } }); }
在具体的 execute()
过程当中,不论是 waitForIdle
仍是 postWaitForIdle
,最终仍是要切换到主线程中执行。要注意的是,这里的 IdleHandler
究竟是何时去执行?
咱们都知道 Handler
是循环处理 MessageQueue
中的消息的,当消息队列中没有更多消息须要处理的时候,且声明了 IdleHandler
接口,这是就会去处理这里的操做。即指定一些操做,当线程空闲的时候来处理。当主线程空闲时,就会通知后台线程延时 5 秒执行内存泄漏检测工做。
void postToBackgroundWithDelay(final Retryable retryable, final int failedAttempts) { long exponentialBackoffFactor = (long) Math.min(Math.pow(2, failedAttempts), maxBackoffFactor); long delayMillis = initialDelayMillis * exponentialBackoffFactor; backgroundHandler.postDelayed(new Runnable() { @Override public void run() { Retryable.Result result = retryable.run(); if (result == RETRY) { postWaitForIdle(retryable, failedAttempts + 1); } } }, delayMillis); }
下面是真正的检测过程,AndroidWatchExecutor
在执行时调用 ensureGone()
方法:
Retryable.Result ensureGone(final KeyedWeakReference reference, final long watchStartNanoTime) { long gcStartNanoTime = System.nanoTime(); long watchDurationMs = NANOSECONDS.toMillis(gcStartNanoTime - watchStartNanoTime); removeWeaklyReachableReferences(); if (debuggerControl.isDebuggerAttached()) { // The debugger can create false leaks. return RETRY; } if (gone(reference)) { return DONE; } gcTrigger.runGc(); removeWeaklyReachableReferences(); if (!gone(reference)) { long startDumpHeap = System.nanoTime(); long gcDurationMs = NANOSECONDS.toMillis(startDumpHeap - gcStartNanoTime); File heapDumpFile = heapDumper.dumpHeap(); if (heapDumpFile == RETRY_LATER) { // Could not dump the heap. return RETRY; } long heapDumpDurationMs = NANOSECONDS.toMillis(System.nanoTime() - startDumpHeap); heapdumpListener.analyze( new HeapDump(heapDumpFile, reference.key, reference.name, excludedRefs, watchDurationMs, gcDurationMs, heapDumpDurationMs)); } return DONE; }
再重复一次几个变量的含义,retainedKeys
是一个 Set
集合,存储检测对象对应的惟一 key
值,queue
是一个引用队列,存储被垃圾回收的对象。
主要过程有一下几步:
private void removeWeaklyReachableReferences() { // WeakReferences are enqueued as soon as the object to which they point to becomes weakly // reachable. This is before finalization or garbage collection has actually happened. KeyedWeakReference ref; while ((ref = (KeyedWeakReference) queue.poll()) != null) { retainedKeys.remove(ref.key); } }
遍历引用队列 queue
,判断队列中是否存在当前 Activity
的弱引用,存在则删除 retainedKeys
中对应的引用的 key
值。
private boolean gone(KeyedWeakReference reference) { return !retainedKeys.contains(reference.key); }
判断 retainedKeys
中是否包含当前 Activity
引用的 key
值。
若是不包含,说明上一步操做中 retainedKeys
移除了该引用的 key
值,也就说上一步操做以前引用队列 queue
中包含该引用,GC
处理了该引用,未发生内存泄漏,返回 DONE
,再也不往下执行。
若是包含,并不会当即断定发生内存泄漏,可能存在某个对象已经不可达,可是还没有进入引用队列 queue
。这时会主动执行一次 GC
操做以后再次进行判断。
/** * Called when a watched reference is expected to be weakly reachable, but hasn't been enqueued * in the reference queue yet. This gives the application a hook to run the GC before the {@link * RefWatcher} checks the reference queue again, to avoid taking a heap dump if possible. */ public interface GcTrigger { GcTrigger DEFAULT = new GcTrigger() { @Override public void runGc() { // Code taken from AOSP FinalizationTest: // https://android.googlesource.com/platform/libcore/+/master/support/src/test/java/libcore/ // java/lang/ref/FinalizationTester.java // System.gc() does not garbage collect every time. Runtime.gc() is // more likely to perfom a gc. Runtime.getRuntime().gc(); enqueueReferences(); System.runFinalization(); } private void enqueueReferences() { // Hack. We don't have a programmatic way to wait for the reference queue daemon to move // references to the appropriate queues. try { Thread.sleep(100); } catch (InterruptedException e) { throw new AssertionError(); } } }; void runGc(); }
注意这里调用 GC
的写法,并非使用 System.gc
。System.gc
仅仅只是通知系统在合适的时间进行一次垃圾回收操做,实际上并不能保证必定执行。
主动进行 GC
以后会再次进行断定,过程同上。首先调用 removeWeaklyReachableReferences()
清除 retainedKeys
中弱引用的 key
值,再判断是否移除。若是仍然没有移除,断定为内存泄漏。
断定内存泄漏以后,调用 heapDumper.dumpHeap()
进行处理:
AndroidHeapDumper.java
@SuppressWarnings("ReferenceEquality") // Explicitly checking for named null. @Override public File dumpHeap() { File heapDumpFile = leakDirectoryProvider.newHeapDumpFile(); if (heapDumpFile == RETRY_LATER) { return RETRY_LATER; } FutureResult<Toast> waitingForToast = new FutureResult<>(); showToast(waitingForToast); if (!waitingForToast.wait(5, SECONDS)) { CanaryLog.d("Did not dump heap, too much time waiting for Toast."); return RETRY_LATER; } Toast toast = waitingForToast.get(); try { Debug.dumpHprofData(heapDumpFile.getAbsolutePath()); cancelToast(toast); return heapDumpFile; } catch (Exception e) { CanaryLog.d(e, "Could not dump heap"); // Abort heap dump return RETRY_LATER; } }
leakDirectoryProvider.newHeapDumpFile()
新建了 hprof
文件,而后调用 Debug.dumpHprofData()
方法 dump
当前堆内存并写入刚才建立的文件。
回到 RefWatcher.ensureGone()
方法中,生成 heapDumpFile
文件以后,经过 heapdumpListener
分析。
heapdumpListener.analyze( new HeapDump(heapDumpFile, reference.key, reference.name, excludedRefs, watchDurationMs, gcDurationMs, heapDumpDurationMs));
这里的 heapdumpListener
是 ServiceHeapDumpListener
对象,接着进入 ServiceHeapDumpListener.runAnalysis()
方法。
@Override public void analyze(HeapDump heapDump) { checkNotNull(heapDump, "heapDump"); HeapAnalyzerService.runAnalysis(context, heapDump, listenerServiceClass); }
这里的 listenerServiceClass
指的是 DisplayLeakService.class
,文章开头提到的 AndroidRefWatcherBuilder
中进行了配置。
@Override protected HeapDump.Listener defaultHeapDumpListener() { return new ServiceHeapDumpListener(context, DisplayLeakService.class); }
HeapAnalyzerService.runAnalysis()
方法中启动了它本身,传递了两个参数,DisplayLeakService
类名和要分析的 heapDump
。启动本身后,在 onHandleIntent
中进行处理。
/** * This service runs in a separate process to avoid slowing down the app process or making it run * out of memory. */ public final class HeapAnalyzerService extends IntentService { private static final String LISTENER_CLASS_EXTRA = "listener_class_extra"; private static final String HEAPDUMP_EXTRA = "heapdump_extra"; public static void runAnalysis(Context context, HeapDump heapDump, Class<? extends AbstractAnalysisResultService> listenerServiceClass) { Intent intent = new Intent(context, HeapAnalyzerService.class); intent.putExtra(LISTENER_CLASS_EXTRA, listenerServiceClass.getName()); intent.putExtra(HEAPDUMP_EXTRA, heapDump); context.startService(intent); } public HeapAnalyzerService() { super(HeapAnalyzerService.class.getSimpleName()); } @Override protected void onHandleIntent(Intent intent) { if (intent == null) { CanaryLog.d("HeapAnalyzerService received a null intent, ignoring."); return; } String listenerClassName = intent.getStringExtra(LISTENER_CLASS_EXTRA); HeapDump heapDump = (HeapDump) intent.getSerializableExtra(HEAPDUMP_EXTRA); HeapAnalyzer heapAnalyzer = new HeapAnalyzer(heapDump.excludedRefs); AnalysisResult result = heapAnalyzer.checkForLeak(heapDump.heapDumpFile, heapDump.referenceKey); AbstractAnalysisResultService.sendResultToListener(this, listenerClassName, heapDump, result); } }
checkForLeak
方法中主要使用了 Square
公司的另外一个库 haha 来分析 Android heap dump
,获得结果后回调给 DisplayLeakService
。
public static void sendResultToListener(Context context, String listenerServiceClassName, HeapDump heapDump, AnalysisResult result) { Class<?> listenerServiceClass; try { listenerServiceClass = Class.forName(listenerServiceClassName); } catch (ClassNotFoundException e) { throw new RuntimeException(e); } Intent intent = new Intent(context, listenerServiceClass); intent.putExtra(HEAP_DUMP_EXTRA, heapDump); intent.putExtra(RESULT_EXTRA, result); context.startService(intent); }
一样在 onHandleIntent
中进行处理。
@Override protected final void onHandleIntent(Intent intent) { HeapDump heapDump = (HeapDump) intent.getSerializableExtra(HEAP_DUMP_EXTRA); AnalysisResult result = (AnalysisResult) intent.getSerializableExtra(RESULT_EXTRA); try { onHeapAnalyzed(heapDump, result); } finally { //noinspection ResultOfMethodCallIgnored heapDump.heapDumpFile.delete(); } }
调用 onHeapAnalyzed()
以后,会将 hprof
文件删除。
DisplayLeakService.java
@Override protected final void onHeapAnalyzed(HeapDump heapDump, AnalysisResult result) { String leakInfo = leakInfo(this, heapDump, result, true); CanaryLog.d("%s", leakInfo); boolean resultSaved = false; boolean shouldSaveResult = result.leakFound || result.failure != null; if (shouldSaveResult) { heapDump = renameHeapdump(heapDump); resultSaved = saveResult(heapDump, result); } PendingIntent pendingIntent; String contentTitle; String contentText; if (!shouldSaveResult) { contentTitle = getString(R.string.leak_canary_no_leak_title); contentText = getString(R.string.leak_canary_no_leak_text); pendingIntent = null; } else if (resultSaved) { pendingIntent = DisplayLeakActivity.createPendingIntent(this, heapDump.referenceKey); if (result.failure == null) { String size = formatShortFileSize(this, result.retainedHeapSize); String className = classSimpleName(result.className); if (result.excludedLeak) { contentTitle = getString(R.string.leak_canary_leak_excluded, className, size); } else { contentTitle = getString(R.string.leak_canary_class_has_leaked, className, size); } } else { contentTitle = getString(R.string.leak_canary_analysis_failed); } contentText = getString(R.string.leak_canary_notification_message); } else { contentTitle = getString(R.string.leak_canary_could_not_save_title); contentText = getString(R.string.leak_canary_could_not_save_text); pendingIntent = null; } // New notification id every second. int notificationId = (int) (SystemClock.uptimeMillis() / 1000); showNotification(this, contentTitle, contentText, pendingIntent, notificationId); afterDefaultHandling(heapDump, result, leakInfo); }
根据分析结果,调用 showNotification()
方法构建了一个 Notification
向开发者通知内存泄漏。
public static void showNotification(Context context, CharSequence contentTitle, CharSequence contentText, PendingIntent pendingIntent, int notificationId) { NotificationManager notificationManager = (NotificationManager) context.getSystemService(Context.NOTIFICATION_SERVICE); Notification notification; Notification.Builder builder = new Notification.Builder(context) // .setSmallIcon(R.drawable.leak_canary_notification) .setWhen(System.currentTimeMillis()) .setContentTitle(contentTitle) .setContentText(contentText) .setAutoCancel(true) .setContentIntent(pendingIntent); if (SDK_INT >= O) { String channelName = context.getString(R.string.leak_canary_notification_channel); setupNotificationChannel(channelName, notificationManager, builder); } if (SDK_INT < JELLY_BEAN) { notification = builder.getNotification(); } else { notification = builder.build(); } notificationManager.notify(notificationId, notification); }
最后还会执行一个空实现的方法 afterDefaultHandling
:
/** * You can override this method and do a blocking call to a server to upload the leak trace and * the heap dump. Don't forget to check {@link AnalysisResult#leakFound} and {@link * AnalysisResult#excludedLeak} first. */ protected void afterDefaultHandling(HeapDump heapDump, AnalysisResult result, String leakInfo) { }
你能够重写这个方法进行一些自定义的操做,好比向服务器上传泄漏的堆栈信息等。
这样,LeakCanary
就完成了整个内存泄漏检测的过程。能够看到,LeakCanary
的设计思路十分巧妙,同时也很清晰,有不少有意思的知识点,像对于弱引用和 ReferenceQueue
的使用, IdleHandler
的使用,四大组件的开启和关闭等等,都很值的你们去深究。