JavaShuo
栏目
标签
Towards Discriminability and Diversity: Batch Nuclear-norm Maximization under Label Insufficient Sit
时间 2020-07-16
标签
discriminability
diversity
batch
nuclear
norm
maximization
label
insufficient
sit
繁體版
原文
原文链接
Abstract 论文做者提出:web In some label insufficient situations, the performance degrades on the decision boundary with high data density. Acommon solution is to directly minimize the Shannon Entropy, but t
>>阅读原文<<
相关文章
1.
Towards Discriminability and Diversity: Batch Nuclear-norm Maximization under Label Insufficient Sit
2.
CVPR 2020(Oral) | 中科院等提出BNM:标签不充分下的判别性与多样性约束方法
3.
Evolutionary approaches towards AI: past, present, and future
4.
Clustering:Gaussian Mixture Model and Expectation Maximization
5.
CVPR/AAAI/ECCV顶会论文/代码
6.
CF677C Vanya and Label
7.
tf.keras入门(4) Explore over-fitting and under-fitting
8.
Covariate shift and batch normalization
9.
DIM(Learning deep representations by mutual information estimation and maximization)
10.
Batch Training
更多相关文章...
•
ASP.NET Label 控件
-
ASP.NET 教程
•
XSL-FO list-item-label 对象
-
XSL-FO 教程
•
RxJava操作符(七)Conditional and Boolean
•
Flink 数据传输及反压详解
相关标签/搜索
maximization
diversity
insufficient
sit
batch
label
batch&each
action.....and
between...and
react+and
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
安装cuda+cuDNN
2.
GitHub的使用说明
3.
phpDocumentor使用教程【安装PHPDocumentor】
4.
yarn run build报错Component is not found in path “npm/taro-ui/dist/weapp/components/rate/index“
5.
精讲Haproxy搭建Web集群
6.
安全测试基础之MySQL
7.
C/C++编程笔记:C语言中的复杂声明分析,用实例带你完全读懂
8.
Python3教程(1)----搭建Python环境
9.
李宏毅机器学习课程笔记2:Classification、Logistic Regression、Brief Introduction of Deep Learning
10.
阿里云ECS配置速记
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Towards Discriminability and Diversity: Batch Nuclear-norm Maximization under Label Insufficient Sit
2.
CVPR 2020(Oral) | 中科院等提出BNM:标签不充分下的判别性与多样性约束方法
3.
Evolutionary approaches towards AI: past, present, and future
4.
Clustering:Gaussian Mixture Model and Expectation Maximization
5.
CVPR/AAAI/ECCV顶会论文/代码
6.
CF677C Vanya and Label
7.
tf.keras入门(4) Explore over-fitting and under-fitting
8.
Covariate shift and batch normalization
9.
DIM(Learning deep representations by mutual information estimation and maximization)
10.
Batch Training
>>更多相关文章<<