本文不涉及ElasticSearch具体原理,只记录如何快速的导入mysql中的数据进行全文检索。html
工做中须要实现一个搜索功能,而且导入现有数据库数据,组长推荐用ElasticSearch实现,网上翻一通教程,都是比较古老的文章了,无奈只能本身摸索,参考ES的文档,总算是把服务搭起来了,记录下,但愿有一样需求的朋友能够少走弯路,能按照这篇教程快速的搭建一个可用的ElasticSearch服务。node
ES搭建有直接下载zip文件,也有docker容器的方式,相对来讲,docker更适合咱们跑ES服务。能够方便的搭建集群或创建测试环境。这里使用的也是容器方式,首先咱们须要一份Dockerfile:mysql
FROM docker.elastic.co/elasticsearch/elasticsearch-oss:6.0.0
# 提交配置 包括新的elasticsearch.yml 和 keystore.jks文件
COPY --chown=elasticsearch:elasticsearch conf/ /usr/share/elasticsearch/config/ # 安装ik
RUN ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.0.0/elasticsearch-analysis-ik-6.0.0.zip # 安装readonlyrest
RUN ./bin/elasticsearch-plugin install https://github.com/HYY-yu/BezierCurveDemo/raw/master/readonlyrest-1.16.14_es6.0.0.zip
USER elasticsearch
CMD ./bin/elasticsearch 复制代码
这里对上面的操做作一下说明:git
elactic配置 elasticsearch.ymles6
cluster.name: "docker-cluster"
network.host: 0.0.0.0
# minimum_master_nodes need to be explicitly set when bound on a public IP
# set to 1 to allow single node clusters
# Details: https://github.com/elastic/elasticsearch/pull/17288
discovery.zen.minimum_master_nodes: 1
# 禁止系统对ES交换内存
bootstrap.memory_lock: true
http.type: ssl_netty4
readonlyrest:
enable: true
ssl:
enable: true
keystore_file: "server.jks"
keystore_pass: server
key_pass: server
access_control_rules:
- name: "Block 1 - ROOT"
type: allow
groups: ["admin"]
- name: "User read only - paper"
groups: ["user"]
indices: ["paper*"]
actions: ["indices:data/read/*"]
users:
- username: root
auth_key_sha256: cb7c98bae153065db931980a13bd45ee3a77cb8f27a7dfee68f686377acc33f1
groups: ["admin"]
- username: xiaoming
auth_key: xiaoming:xiaoming
groups: ["user"]
复制代码
这里
bootstrap.memory_lock: true
是个坑,禁止交换内存这里文档已经说明了,有的os会在运行时把暂时不用的内存交换到硬盘的一块区域,然而这种行为会让ES的资源占用率飙升,甚至让系统没法响应。github
配置文件里已经很明显了,一个root用户属于admin组,而admin有全部权限,xiaoming同窗由于在user组,只能访问paper索引,而且只能读取,不能操做。更详细的配置请见:readonlyrest文档sql
至此,ES的准备工做算是作完了,docker build -t ESImage:tag
一下,docker run -p 9200:9200 ESImage:Tag
跑起来。docker
若是https://127.0.0.1:9200/返回数据库
{
"name": "VaKwrIR",
"cluster_name": "docker-cluster",
"cluster_uuid": "YsYdOWKvRh2swz907s2m_w",
"version": {
"number": "6.0.0",
"build_hash": "8f0685b",
"build_date": "2017-11-10T18:41:22.859Z",
"build_snapshot": false,
"lucene_version": "7.0.1",
"minimum_wire_compatibility_version": "5.6.0",
"minimum_index_compatibility_version": "5.0.0"
},
"tagline": "You Know, for Search"
}
复制代码
咱们本次教程的主角算是出场了,分享几个经常使用的API调戏调试ES用:json
{{url}}替换成你本地的ES地址。
这里我使用的是MYSQL数据,其实其它的数据库也是同样,关键在于如何导入,网上教程会推荐Logstash、Beat、ES的mysql插件进行导入,我也都实验过,配置繁琐,文档稀少,要是数据库结构复杂一点,导入是个劳心劳神的活计,因此并不推荐。其实ES在各个语言都有对应的API库,你在语言层面把数据组装成json,经过API库发送到ES便可。流程大体以下:
我使用的是Golang的ES库elastic,其它语言能够去github上自行搜索,操做的方式都是同样的。
接下来使用一个简单的数据库作介绍:
id | name |
---|---|
1 | 北京第一小学模拟卷 |
2 | 江西北京通用高考真题 |
id | name |
---|---|
1 | 北京 |
2 | 江西 |
paper_id | province_id |
---|---|
1 | 1 |
2 | 1 |
2 | 2 |
如上,Paper和Province是多对多关系,如今把Paper数据打入ES,,能够按Paper名称模糊搜索,也可经过Province进行筛选。json数据格式以下:
{
"id":1,
"name": "北京第一小学模拟卷",
"provinces":[
{
"id":1,
"name":"北京"
}
]
}
复制代码
首先准备一份mapping.json文件,这是在ES中数据的存储结构定义,
{
"mappings":{
"docs":{
"include_in_all": false,
"properties":{
"id":{
"type":"long"
},
"name":{
"type":"text",
"analyzer":"ik_max_word" // 使用最大词分词器
},
"provinces":{
"type":"nested",
"properties":{
"id":{
"type":"integer"
},
"name":{
"type":"text",
"index":"false" // 不索引
}
}
}
}
}
},
"settings":{
"number_of_shards":1,
"number_of_replicas":0
}
}
复制代码
须要注意的是取消_all字段,这个默认的_all会收集全部的存储字段,实现无条件限制的搜索,缺点是空间占用大。
shard(分片)数我设置为了1,没有设置replicas(副本),毕竟这不是一个集群,处理的数据也不是不少,若是有大量数据须要处理能够自行设置分片和副本的数量。
首先与ES创建链接,ca.crt与jks自签名有关。固然,在这里我使用InsecureSkipVerify忽略了证书文件的验证。
func InitElasticSearch() {
pool := x509.NewCertPool()
crt, err0 := ioutil.ReadFile("conf/ca.crt")
if err0 != nil {
cannotOpenES(err0, "read crt file err")
return
}
pool.AppendCertsFromPEM(crt)
tr := &http.Transport{
TLSClientConfig: &tls.Config{RootCAs: pool, InsecureSkipVerify: true},
}
httpClient := &http.Client{Transport: tr}
//后台构造elasticClient
var err error
elasticClient, err = elastic.NewClient(elastic.SetURL(MyConfig.ElasticUrl),
elastic.SetErrorLog(GetLogger()),
elastic.SetGzip(true),
elastic.SetHttpClient(httpClient),
elastic.SetSniff(false), // 集群嗅探,单节点记得关闭。
elastic.SetScheme("https"),
elastic.SetBasicAuth(MyConfig.ElasticUsername, MyConfig.ElasticPassword))
if err != nil {
cannotOpenES(err, "search_client_error")
return
}
//elasticClient构造完成
//查询是否有paper索引
exist, err := elasticClient.IndexExists(MyConfig.ElasticIndexName).Do(context.Background())
if err != nil {
cannotOpenES(err, "exist_paper_index_check")
return
}
//索引存在且经过完整性检查则不发送任何数据
if exist {
if !isIndexIntegrity(elasticClient) {
//删除当前索引  准备重建
deleteResponse, err := elasticClient.DeleteIndex(MyConfig.ElasticIndexName).Do(context.Background())
if err != nil || !deleteResponse.Acknowledged {
cannotOpenES(err, "delete_index_error")
return
}
} else {
return
}
}
//后台查询数据库,发送数据到elasticsearch中
go fetchDBGetAllPaperAndSendToES()
}
复制代码
type PaperSearch struct {
PaperId int64 `gorm:"primary_key;column:F_paper_id;type:BIGINT(20)" json:"id"`
Name string `gorm:"column:F_name;size:80" json:"name"`
Provinces []Province `gorm:"many2many:t_paper_province;" json:"provinces"` // 试卷适用的省份
}
func fetchDBGetAllPaperAndSendToES() {
//fetch paper
var allPaper []PaperSearch
GetDb().Table("t_papers").Find(&allPaper)
//province
for i := range allPaper {
var allPro []Province
GetDb().Table("t_provinces").Joins("INNER JOIN `t_paper_province` ON `t_paper_province`.`province_F_province_id` = `t_provinces`.`F_province_id`").
Where("t_paper_province.paper_F_paper_id = ?", allPaper[i].PaperId).Find(&allPro)
allPaper[i].Provinces = allPro
}
if len(allPaper) > 0 {
//send to es - create index
createService := GetElasticSearch().CreateIndex(MyConfig.ElasticIndexName)
// 此处的index_default_setting就是上面mapping.json中的内容。
createService.Body(index_default_setting)
createResult, err := createService.Do(context.Background())
if err != nil {
cannotOpenES(err, "create_paper_index")
return
}
if !createResult.Acknowledged || !createResult.ShardsAcknowledged {
cannotOpenES(err, "create_paper_index_fail")
}
// - send all paper
bulkRequest := GetElasticSearch().Bulk()
for i := range allPaper {
indexReq := elastic.NewBulkIndexRequest().OpType("create").Index(MyConfig.ElasticIndexName).Type("docs").
Id(helper.Int64ToString(allPaper[i].PaperId)).
Doc(allPaper[i])
bulkRequest.Add(indexReq)
}
// Do sends the bulk requests to Elasticsearch
bulkResponse, err := bulkRequest.Do(context.Background())
if err != nil {
cannotOpenES(err, "insert_docs_error")
return
}
// Bulk request actions get cleared
if len(bulkResponse.Created()) != len(allPaper) {
cannotOpenES(err, "insert_docs_nums_error")
return
}
//send success
}
}
复制代码
跑通上面的代码后,使用{{url}}/_cat/indices?v
看看ES中是否出现了新建立的索引,使用{{url}}/papers/_search
看看命中了多少文档,若是文档数等于你发送过去的数据量,搜索服务就算跑起来了。
如今就能够经过ProvinceID和q来搜索试卷,默认按照相关度评分排序。
//q 搜索字符串 provinceID 限定省份id limit page 分页参数
func SearchPaper(q string, provinceId uint, limit int, page int) (list []PaperSearch, totalPage int, currentPage int, pageIsEnd int, returnErr error) {
//不知足条件,使用数据库搜索
if !CanUseElasticSearch && !MyConfig.UseElasticSearch {
return SearchPaperLocal(q, courseId, gradeId, provinceId, paperTypeId, limit, page)
}
list = make([]PaperSimple, 0)
totalPage = 0
currentPage = page
pageIsEnd = 0
returnErr = nil
client := GetElasticSearch()
if client == nil {
return SearchPaperLocal(q, courseId, gradeId, provinceId, paperTypeId, limit, page)
}
//ElasticSearch有问题,使用数据库搜索
if !isIndexIntegrity(client) {
return SearchPaperLocal(q, courseId, gradeId, provinceId, paperTypeId, limit, page)
}
if !client.IsRunning() {
client.Start()
}
defer client.Stop()
q = html.EscapeString(q)
boolQuery := elastic.NewBoolQuery()
// Paper.name
matchQuery := elastic.NewMatchQuery("name", q)
//省份
if provinceId > 0 && provinceId != DEFAULT_PROVINCE_ALL {
proBool := elastic.NewBoolQuery()
tpro := elastic.NewTermQuery("provinces.id", provinceId)
proNest := elastic.NewNestedQuery("provinces", proBool.Must(tpro))
boolQuery.Must(proNest)
}
boolQuery.Must(matchQuery)
for _, e := range termQuerys {
boolQuery.Must(e)
}
highligt := elastic.NewHighlight()
highligt.Field(ELASTIC_SEARCH_SEARCH_FIELD_NAME)
highligt.PreTags(ELASTIC_SEARCH_SEARCH_FIELD_TAG_START)
highligt.PostTags(ELASTIC_SEARCH_SEARCH_FIELD_TAG_END)
searchResult, err2 := client.Search(MyConfig.ElasticIndexName).
Highlight(highligt).
Query(boolQuery).
From((page - 1) * limit).
Size(limit).
Do(context.Background())
if err2 != nil {
// Handle error
GetLogger().LogErr("搜索时出错 "+err2.Error(), "search_error")
// Handle error
returnErr = errors.New("搜索时出错")
} else {
if searchResult.Hits.TotalHits > 0 {
// Iterate through results
for _, hit := range searchResult.Hits.Hits {
var p PaperSearch
err := json.Unmarshal(*hit.Source, &p)
if err != nil {
// Deserialization failed
GetLogger().LogErr("搜索时出错 "+err.Error(), "search_deserialization_error")
returnErr = errors.New("搜索时出错")
return
}
if len(hit.Highlight[ELASTIC_SEARCH_SEARCH_FIELD_NAME]) > 0 {
p.Name = hit.Highlight[ELASTIC_SEARCH_SEARCH_FIELD_NAME][0]
}
list = append(list, p)
}
count := searchResult.TotalHits()
currentPage = page
if count > 0 {
totalPage = int(math.Ceil(float64(count) / float64(limit)))
}
if currentPage >= totalPage {
pageIsEnd = 1
}
} else {
// No hits
}
}
return
}
复制代码
Over