风口下的追逐:AI正在驾驶、客服、教育领域疾驰

编辑 | Natalie

随着全球新一轮科技革命的到来,人工智能已经成为企业发展的新焦点和互联网变革浪潮的新引擎。程序员

若是说 2017 年是人工智能技术爆发的“元年”,那么 2018 年则是人工智能技术的“落地之年”。人们的关注点也会从下围棋等比赛型活动慢慢转移到利用人工智能真正解决世界面临的问题。在这个背景下,很多人工智能创业公司面临挑战,但大浪淘沙后活下来的公司和成功转型的传统企业可能会成为将来人工智能产业的领导者。算法

5 月 15 日,TIC 大会“当 AI 赶上 Cloud:人工智能的应用实践专场”聚焦人工智能的实际应用和实践,来自 UCloud、驭势科技、第四范式、北京褚时科技的资深专家和技术负责人,现场探讨了如何利用云计算技术助推机器学习、深度学习、视觉计算等 AI 技术和应用迅速落地。本文整理了讲师现场演讲的干货内容,但愿为你们提供一些思考和借鉴。docker

如何利用公有云快速落地 AI 应用

随着人工智能产业的兴起,人工智能技术已经逐渐被运用于各行各业。可是不管是对初涉人工智能应用的传统互联网企业,亦或人工智能领域创业公司,如何快速、高效地落地 AI 应用都成为了巨大的挑战。UCloud 人工智能技术专家宋翔结合 UCloud 在公有云领域多年的积累,提出 UCloud 的 AI 落地解决方案,经过提供简单易用、稳定、高性价比的 AI PaaS 平台来帮助快速调研、开发和部署 AI 应用。数据库

AI 落地的技术挑战

如何将 AI 技术与具体的产业应用结合起来,找到实际场景落地对于企业的发展来讲很是关键,宋翔结合 UCloud 实际经验提出了 AI 落地的技术挑战。后端

第一,基础环境。基础环境不只涉及到 AI 的框架,还涉及到算法库、各类各样的硬件设备及多类存储。这些方面的选择交叉会产生一个很是复杂的环境。如何控制基础环境,并使开发人员更方便地使用环境,是第一个挑战。安全

第二,AI 系统的建设。AI 的落地须要一个成体系的 AI 系统,可否更好地兼容各种 AI 框架和算法,可否使平台具有横向拓展能力,支持业务规模的不断扩大,以及是否具有弹性伸缩能力和容灾能力等,这都对算法的兼容性、平台的扩展性、分布式化、纵向拓展系统提出更高的要求。服务器

第三,投入产出。怎样以较小的投入获得较高的回报,是 AI 投资商都要考虑的问题。好比在调研阶段怎么以较轻的资源和较少的投入去验证想法,在开展 AI 应用时怎么压缩研发的成本,使研发人员更专一于算法,以及怎么下降资源成本和运营成本等。网络

AI 落地技术挑战的解决思路

针对 AI 落地技术面临的问题,宋翔提出了 UCloud 的解决思路。在 UCloud 看来,最核心的方法是平台化。实现平台化则须要作到环境分离、分布式化、可扩展性和资源共享四个维度共同发展。架构

环境分离

首先是环境分离,环境分离分为 3 个主要的方向:负载均衡

第一,经过容器的封装把 AI 软件层的软件栈和基础资源进行隔离,其次经过 CPU 云主机、GPU 云主机、物理云主机和底层的 GPU 资源或者 CPU 资源进行隔离,最后经过软件接入层把存储和计算进行隔离,让更多的存储资源接入到 AI 环境中去。

其中,环境分离的基础想法涉及两个核心的技术,第一个为容器技术,第二个为数据接入技术。

容器技术以层层隔离的方式进行分离。如下图的软件栈为例,最底层为基础环境,中间层为计算库,例如 CPU 或 GPU,而后在此基础上累加不一样的 AI 框架,增长 AI 算法和代码的实现。

由此,容器技术能够带来五个方面的好处:

  • 封装。运行环境彻底隔离,不一样任务之间不会产生软件冲突。

  • 预装。基础镜像内置各种基础软件环境,减小使用者环境准备开销。

  • 自由。能够自由安装各种软件包,封装各种算法。

  • 可重用。算法的容器镜像能够重复使用。

  • 兼容性。GPU 容器镜像能够在任意类型 GPU 节点运行。 CPU 容器镜像能够在任意类型 CPU 节点运行。

数据接入技术则需提供本地存储和 NFS 两种接口,使得上层的计算节点访问各种的数据层,经过数据接入层作接口转移、带宽控制甚至权限控制等功能。

一样,数据接入技术能够带来多方面的好处:

  • 封装。计算节点逻辑不须要支持各类存储接口,仅须要经过 2-3 种(例如本地存储、NFS)接口就能够对接各种存储类型。

  • 灵活。经过拓展数据接入层可接入的存储类型,也就能够拓展 AI 平台的数据接入类型。

  • 稳定。数据接入层能够作数据流量控制,确保各个任务的 SLA,同时对后端的数据存储系统进行带宽、流量保护。

  • 安全。数据访问权限控制,确保数据安全性。

分布式化

进行软件分离后,就能够考虑搭建一个训练平台,包括任务调度、资源管理、容灾容错的能力。

同时,也能够搭建一个在线推理平台,经过此平台快速的部署本身分布式的在线任务。

可拓展性

当平台搭建完成后,就很容易作横向拓展和纵向拓展。好比纵向拓展,能够经过平台的管理系统管理 CPU 集群、GPU 集群,并可快速的增长本身的资源池。

资源共享

在搭建完成的平台上能够统一的管理 CPU、GPU 还有存储的集群,在不一样的业务组或者不一样的公司之间共享这些资源,使得资源的使用率变得更高。

公有云在 AI 落地环境扮演的角色

做为国内最先成立的一批公有云创业公司,AI 的发展对于 UCloud 能够说是大势所趋,也是水到渠成。那么,公有云在 AI 落地环境重扮演什么样的角色呢?

整体来讲,利用公有云来作 AI 落地,首先享受到的是 IaaS 的服务

  • 资源。充足的计算资源、存储资源、网络资源, 下降 AI 研发过程资源采购、维护的成本

  • 基础环境。提供虚拟机镜像、容器镜像等服务。 下降 AI 研发、应用过程当中 AI 环境部署的难度。

  • 基础服务。提供诸如负载均衡(ULB)、分布式存储等基础服务。 下降 AI 应用产品化过程的研发成本。

其次还能够享受以用公有云的 PaaS 服务:

  • 环境封装。提供预置 AI 基础环境,包括 NV GPU 驱动、Cuda、TensorFlow/MXNet 等框架,用户无需进行复杂的环境安装、配置工做;

  • 分布式。提供 AI 训练平台和 AI 在线服务平台,提供一站式 AI, 用户无需自行搭建复杂的 AI 平台;

  • 横向拓展。提供充足 CPU/GPU 资源,可自由横向拓展,用户无需担忧资源问题;

  • 纵向拓展。经过多种计算、存储网络资源类型,用户可自由选择合适组合;

  • 计费灵活。基于秒级分钟级的计费规则,按需收费, 用户无需担忧资源浪费。

嵌入式设备上的实时深度学习方法实践

除了软件技术,人工智能的落地应用,也必然离不开硬件设备的支持。驭势科技的人工智能技术负责人潘争,现场讲解了嵌入式设备上的实时深度学习方法实践,包括视觉识别在自动驾驶中的需求和挑战以及效率精度平衡的卷积网络。

视觉感知特色

随着汽车自动驾驶技术的发展,车载光学系统和车载雷达系统在保证行车安全上显得尤其重要。

当前,提到自动驾驶汽车环境感知技术,不少人会首先想到激光雷达。的确,相较于摄像头、毫米波雷达等车载传感器,激光雷达具备高精度、高分辨率的优点,但受制于价格高昂的因素还没有普及开来。所以,在已有激光雷达方案之余,如何找到一种成本更低的环境感知解决办法成了不少企业关心的问题。针对这个难题,视觉感知应运而生。

视觉感知包含如下的特色:

一,信息更丰富。以激光雷达为主的传感器,主要作一些云的感知和深度的感知,可是物体的颜色、纹理它是没法感知的。好比前方有一个障碍物,激光雷达传感器没法判断究竟是一辆车仍是一我的,只是知道一个形状信息,并不知道一些纹理的信息。可是经过视觉感知,就可知道它具体的颜色属性及具体的纹理表现,潜在的获得更多的信息,辅助决策和控制。

二,视野更宽阔。激光雷达的上下视野为 30 度到 60 度,并且最多只有 64 个像素的感知。能够想象,若是一个图片上下只有 64 个象素,这张图片则是很是模糊的。可是经过摄像头来感知周围的环境,上下则有 720 个像素感知周围的世界,可以帮助你捕捉更多的信息。

三,基建更配合。道路设计、障碍物、各类各样的信号灯、交通标志其实都是为了视觉信息而设计传达的。

四,硬件更便宜。激光雷达是一个很是昂贵的设备,相对于一个摄像头,它的成本是几十倍,甚至上百倍的价格,少则几万块,动辄几十万。而视觉感知则可拥有民用级、够实用的产品需求。

效率精度平衡的卷积网络

基于视觉感知的特色,驭势科技很是重视视觉识别算法的开发,但愿用嵌入式的 GPU 平台去完成全部视觉感知所须要的计算。这就须要作不少网络压缩优化的工做,使效率和精度可以取得一个比较平衡的网络选择。

比较近几年比较有名的网络会发现,若想提升大概 10% 的正确率,就要付出大几十倍的计算量,那么必须使用精度最高的网络才能达到自动驾驶的精度需求么?

潘争介绍了两个速度较快的网络,第一个为 PVANet,以下图所示:

PVANet 把原来的标准卷积变成了两部分,一部分是正常卷积,另外一部分则把卷积结果取反再和原来卷积结果进行拼凑。这样既省了一半的计算量,又能获得两倍计算量维度的特征图。由此驭势科技在 PVANet 网络上进行了人车检测的性能测试,测试发现,对于比较密集的场景,PVANet 能够把全部的人、车检测出来,而不须要几百层,甚至上千层的网络。因此,把像 PVANet 级别的网络应用到自动驾驶中完成实时的人车检测是彻底可行的。

第二个为 MobileNet,以下图所示:

它的基本原理是把三维的卷积和分解成两个部分。第一部分对每一个输出的 map 进行二维的卷积,使三维卷积变成二维卷积,下降计算量。图中列了计算量下降的倍数,分子是 MobileNet 的分解后的计算量,分母是原始的标准卷积的计算量,能够发现,它的计算量是原来基础上的 DK 方之一,再加 N 分之一,也就是说,若用一个 3×3 的卷积,经过 MobileNet 方式,就会变成原来九分之一的计算量,同时它还可以保证达到和原来一样精度的效果。

基于云计算构建机器学习系统的实践

云计算的发展加快机器学习的落地,机器学习除了对云计算有算力的需求以外,如何基于云计算构建一个可靠的机器学习系统是每一个企业都须要考虑的。UCloud 高级研发总监叶理灯,以在线推测系统为例,展现一套机器学习平台的设计及实现方案,包括资源的管理,架构设计及实现。

Serverless 产品及架构

Serverless 指的是由开发者实现的服务端逻辑运行在无状态的计算容器中,它由事件触发, 彻底被第三方管理,其业务层面的状态则被开发者使用的数据库和存储资源所记录。以下图所示:

图中上半部分描述的是互联网应用传统架构的模型:用户客户端 APP 与部署在服务器端的常驻进程通讯,服务端进程处理该应用的大部分业务逻辑流程。下半部分则描述了 Serverless 架构模型。与传统架构模型最大的不一样在于,互联网应用的大部分业务逻辑流程被转移到客户端上,客户端经过调用第三方服务接口来完成诸如登陆、鉴权、读取数据库等通用业务场景;高度定制化的业务逻辑则经过调用第三方 FaaS 平台执行自定义代码来完成。整体上看,Serverless 架构将传统架构中的服务器端的整串后台流程拆分红在客户端上执行一个个第三方服务调用或 FaaS 调用。

在 Serverless 架构中,软件开发者和运维工程师们再也不须要关心服务器的部署、架设、伸缩,这些问题交给云平台商来解决,程序员们得以将精力投入用代码来实现业务逻辑中,而不是管理服务器。Serverless 并不意味着再也不须要服务器了,只是服务器资源的申请、使用、调度、伸缩由云服务商自动实现,应用开发者无需关心。

构建在线推测系统

基于 Serverless 不用管理,可弹性扩用、高可用和按需付费的四个方面的特性,能够构建一个公司 AI 的系统,主要分为三步:

第一步,建设一个底层的计算平台。

第二步,上层 APP 管理,方便用户去管理模型。

第三步,提供 SDK。方便用户在不一样的框架上使用系统。

那么怎么构建一个知足 Serverless 的计算平台呢,首先须要考虑两个问题。

第一,但愿用户使用这个计算平台时,是不用运维这个计算平台的。

第二,但愿用户使用这个计算平台的时候,是按照实际消耗的计算资源来计费的,而不是按照配置来计费。

下图是一个简单的 PUC 的示意图:

假设在构建这个系统时,对外提供两个能力,一个能力是容许用户经过把算法打包成 docker 上传,另外一个能力是容许用户提交任务、计算任务。指定 API 上传到 docker 仓库的路径,而后把计算的结果经过 API 返回。

下图为中央平台的详细架构:

这是个彻底基于 IaaS 平台搭建出来的计算平台的架构,具有跨可用区容灾、按 Set 部署、灰度发布及全部模块能够平行扩展的优势。

搭建这个系统以后,须要在计算平台上面加 APP Engine 层,利用这层,能够去建立一个 APP,这个 APP 对应的算法就是你的 docker 镜像,能够经过它来管理,也能够切换不一样的版本的访问。

有了计算平台和 APP Engine 这两层服务以后,其实机器学习的 Inference 的系统基本上就出来了,下图为整个框架的系统最后的示意图,当请求过来后,但愿 Inference 代码的 AI 模型是直接打包进来放到计算平台,业务能够经过 APP Engine 提供的路口直接访问,也能够访问一个 model。

AI 技术在客服领域的应用实践

强 AI 时代,人们对活跃于各行各业的智能客服的期待也愈来愈高。第四范式智能客服负责人邢少敏介绍第四范式人工智能技术在客服领域的应用实践,包括分享智能客服工做原理,使用的相关天然语言处理、机器学习、深度学习等技术以及研发智能客服的技术难点。

智能客服工做原理

为何要有客服呢?为何要有智能客服呢?相信你们都会有了解。在不少行业里面,其实都有一个客服问题,不管是受权的咨询仍是售后的服务等等,大量的问题都具备重复性,这些重复性的问题则会浪费大量人的成本。而大量有价值的数据例如聊天记录、历史记录是闲置的,没有被利用起来。因此这种状况下就有了智能客服。

智能客服比较典型的常见功能,总结一下为三类:

第一类,单轮问答。

第二类,多轮对话。

第三类,人机协做。

而智能客服的工做原理,基本上各家智能客服厂商的作法都大同小异,都是相似的方向,以下图所示:

首先须要语音识别模块,把客户的语音识别成文字,而后作文字的理解,接着作意图识别,最后再在对话管理系统里面进行分配。

具体来讲,智能客服的工做原理分为如下几个模块:

一、天然语音处理,好比说分词、分句、词性标注、句法分析、指代消解,句子的权重,语意类似度等,还有问句的类型、句型等。这些会在第一步对用户的问题作一个全面的分析,而后保存下来。

二、意图识别,借助前面天然语言处理的一些结果,分为两种方式,一个是模板方式,另外一个是分类器的方式。模板的方式很简单,经过与模板的对比进行意图分析。而分类器的方式,是经过收藏某个领域大量的数据后,进行人工标注,再训练成为一个分类器进行意图识别。这两种方式各有优劣,模板方式的问题在于,它虽然很精准,但它的画画能力比较弱,分类器的方式画画能力强,但缺乏不少数据。

三、知识库,知识库实际上是智能客服系统最主要的一种模式,它的作法基本上与作一个搜索引擎比较相似,基本上分两步。

第一步是侯选集的召回。从知识库里召回一些可能跟问题类似的一些侯选集。

第二步是重排序。用文本类似度、句子类似度解锁相关度,或者用神经网络的类似度模型或者用多模型融合。

四、知识图谱,知识图谱与知识库的区别是,知识库是一种问答的结构或者是一种树形的结构,而知识图谱是一种图状的结构。

知识图谱常见的工具备 Neo4j、OrientDB、Titan 等等。

五、对话技术,对话技术也有 3 种方式,第一种是有限状态机填槽,第二种是 MDP 的方式,第三种是学术界常常用的端到端的模型,但愿用一个巨大的模型解决出现的全部问题。

以下图所示:

左边是装载机的一个示意图,右边这张是 MDP,就是马尔可夫决策过程的示意图。

六、聊天机器人。实际上也是两种作法,一种是用神经网络的方式,主流的是用神经网络,或者说用统计模型之类的,经过收集大量的语料训练出模型,只要语料足够多,它的效果就足够好。另外一种是模型的方式,但所带来的问题是不精准且须要大量的语料。

智能客服技术难点
数据缺失问题:
  • 多数状况下,没有足够数据训练模型

  • SaaS 服务涉及到不一样领域,数据不足问题更加突出

数据冷启动方法:
  • 通用语科训练模型,数据增加后再优化模型

  • 先用规则系统,数据到了必定量,在用模型

多轮对话:
  • 多领域对话仍然是难题:

    • 逐个领域作对话成本过高

    • 通用对话管理效果不理想

  • 场景切换没法平滑进行

    • 不容许切换场景显得死板

    • 容许切换场景复杂度大幅度提高

人机协做:
  • 现有方式仍然是机器人为辅

    • 机器人回答不了,人回答

    • 机器人推荐答案给人

  • 探索让机器人为主,人工为辅

    • 提升机器人回答准确率

    • 提升机器人自学习能力

AI 技术在教育领域的应用

除了常见的智能客服,AI 近年来在教育领域也大放异彩,北京褚时科技 CEO 李曙光现场经过 AI 在口语测评和做业批改等领域的解决方案分享,深刻浅出解析了“图像”、“语音”、“天然语言处理”等技术在应用层的技术实践。

自动口语评测

如今市面上广泛能够看到的产品,基于的评测技术主要是两类。

基于 GOP(Goodness of Pronunciation):(例如英语流利说、少儿领域的英语趣配音)

其主要技术为:

  • 强制对齐, 语音模型分数对比,发现有问题读音;韵律,语速和流利度;

  • 加入语音识别;

  • 深度学习:CNN,DNN;

  • 移动端。

Freetalk 口语评测技术:(应用于托福或者雅思的开放式题目)

其主要技术为:

  • 语音分析:对发音,重音,语调,语速和流利度等方面进行分析和特征提取。

  • 语音识别:针对英语非母语者的语音识别,使用深度学习方法,识别准确率对于提取口语内容关键。

  • 天然语言处理分析:对识别内容在话题相关性,语义连贯性,语法错误,词汇使用,用词搭配等多维度上进行分析和特征提取。

  • 自动打分:多模型融合,大量口语训练语料。

应用场景:

一、托福和雅思口语考试自动打分和批改: 目前在打分上能够取代人工,平均偏差在 2 分左右(30 分满分),大幅下降教师重复劳动。二、斩托福和斩雅思:流量题库产品,覆盖 80% 以上的出国考生。累计百万学生使用,

自动做文评测

主要的评测技术为:

  • 语法错误检查:主谓一致,动词形式的使用,词组的搭配,冠词使用、词性、选词、介词用法,动词时态等方面,Spelling,专有名词大小写和句首字母大小写等。

  • 天然语言处理分析特征提取:分析和统计学生做文中的文本特征,包括用词复杂度,用词搭配使用,语篇组织结构,论述连贯性和是否离题,对于议论文可否支持论点论述等等。

  • 自动打分引擎:针对特定的考试类型,咱们使用机器学习算法(分类,排序),动态调整以上各个方面所占权重和最终的评分标准,训练相应的打分模型,最终系统能够在多个纬度给出详细的分析报告和反馈;

  • CNN 等方法融合。

应用场景

一、初高中,托福雅思等做文自动打分和批改: 取代人工打分,平均偏差在 2 分左右(30 分满分),相似 ETS 的 e-rater;

二、基于海量人工批改数据研发;在语法错误检测数量和精准度上远远领先于同类产品,能够和全球用户量最大的的批改引擎 Grammarly 媲美。

AI 的更多应用
自适应学习技术
  • 知识点创建知识图谱。

  • 试题标签:知识点,难度,题型,考察能力等。

  • 根据模考结果的数据分析,能够更精准的为不一样能力的学生提供个性化备考计划,推送和及时调整学习路径。

  • 自适应测试:Item Response Theory(IRT),根据难度,区分度等建模,比较少的题目,测的更准。

手写板场景

如下几个领域是褚时科技一直关注的几个方向(目前还不能很好的产品化,预计将来突破)。须要和 K12 培训机构或者公立学校合做。

  • 手写公式识别:能够参考美国 MyScript 这个公司,已经趋于成熟。可是存在换行等问题。

  • 数学等主观题识别:手写公式,字母识别还有汉字识别准确度提高,趋于成熟。

  • 数学应用题解题和批改:趋于成熟。

  • 初高中数学几何题目解题和批改:解题准确度还有提高空间,目前准确度已经超过 70%;批改趋于成熟。

相关文章
相关标签/搜索